

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

MK University, Patan
Faculty of Engineering Technology,
Department of Electronics & Communication Engineering

M. TECH (ELECTRONICS & COMMUNICATION ENGINEERING) SEM-I

SR NO.	COURSE TYPE	COURSECODE	COURSE NAME	LECTURE (HRS.)/WEEK	PRACTICAL (HRS.)/WEEK	CREDITS	EXAMINATION		TOTAL MARKS
							INTERNAL	EXTERNAL	
1	MAJOR	MTECE101	ADVANCED MATHEMATICS FOR ENGINEERS	4	0	4	40	60	100
2	MAJOR	MTECE102	ADVANCED DIGITAL SIGNAL PROCESSING	4	2	6	90	60	150
3	MAJOR	MTECE103	ADVANCED COMMUNICATION SYSTEMS	4	2	6	90	60	150
4	MINOR	MTECE104	RESEARCH METHODOLOGY & TECHNICAL COMMUNICATION	4	0	4	40	60	100
5	SEC	MTECE105	ENTERPRENEURSHIP DEVELOPMENT	4	0	4	40	60	100
TOTAL				20	4	24	300	300	600

M. TECH (ELECTRONICS & COMMUNICATION ENGINEERING) SEM-II

SR NO.	COURSE TYPE	COURSE CODE	COURSE NAME	LECTURE (HRS.)/WEEK	PRACTICAL (HRS.)/WEEK	CREDITS	EXAMINATION		TOTAL MARKS
							INTERNAL	EXTERNAL	
1	MAJOR	MTECE201	VLSI DESIGN & VERIFICATION	4	2	6	90	60	150
2	MAJOR	MTECE202	EMBEDDED & REAL TIME SYSTEMS	4	2	6	90	60	150
3	MAJOR	MTECE203	ADVANCED ANTENNA & RF ENGINEERING	4	2	6	90	60	150
4	MINOR	MTECE204	IOT & SENSOR NETWORKS	4	0	4	40	60	100
5	VAC	MTECE205	BUSINESS COMMUNICATION-I	2	0	2	0	50	50
TOTAL				18	6	24	310	290	600

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

M. TECH (ELECTRONICS & COMMUNICATION ENGINEERING) SEM-III									
SR NO .	COURSE TYPE	COURSE CODE	COURSE NAME	LECTU RE (HRS.)/ WEEK	PRACTI CAL (HRS.)/ WEEK	CREDIT S	EXAMINATION		TOTA L MARK S
							INTER NAL	EXTER NAL	
1	MAJOR	MTECE301	ADVANCED MICROWAVE ENGINEERING	4	2	6	90	60	150
2	MAJOR	MTECE302	AI & MACHINE LEARNING FOR ECE	4	2	6	90	60	150
3	MINOR	MTECE303	MOOC/SWAYAM COURSE	3	0	3	100	00	100
4	VAC	MTECE304	DISSERTATION PHASE-I	0	8	8	100	100	200
TOTAL				11	12	23	380	220	600

M. TECH (ELECTRONICS & COMMUNICATION ENGINEERING) SEM-IV									
SR NO .	COURSE TYPE	COURSE CODE	COURSE NAME	LECTU RE (HRS.)/ WEEK	PRACTI CAL (HRS.)/ WEEK	CREDIT S	EXAMINATION		TOTA L MARK S
							INTER NAL	EXTER NAL	
1	MAJOR	MTECE401	INDUSTRY SEMINARS/WORKS HOPS/INTERNSHIP	0	2	2	50	00	50
2	MINOR	MTECE402	COMPREHENSIVE VIVA VOCE	0	2	2	50	00	50
3	MAJOR	MTECE403	DISSERTATION PHASE-II	0	16	16	200	200	400
4	VAC	MTECE404	BUSINESS COMMUNICATION-II	2	0	2	00	50	50
TOTAL				2	20	22	300	250	550

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-I

SUBJECT CODE: MTECE101

SUBJECT NAME: ADVANCED MATHEMATICS FOR ENGINEERS

Course Objectives:

- To provide a rigorous mathematical foundation for advanced engineering modeling and analysis.
- To bridge theoretical mathematics with practical engineering applications.
- To develop problem-solving skills using analytical and computational tools.
- To prepare students for research and development in engineering domains requiring mathematical sophistication.

Course Outcomes: At the end of the course students shall be able to

CO1	Formulate and solve engineering problems using advanced techniques in linear algebra and tensor analysis.
CO2	Apply partial differential equations (PDEs) and transform methods to model dynamical systems and boundary value problems.
CO3	Use variational calculus and optimization methods for engineering design and control problems.
CO4	Analyze stochastic systems and uncertainty propagation using probability theory and statistical methods.

Unit	Content	Credit	Weightage
I	Advanced Linear Algebra & Tensors for Engineers <ul style="list-style-type: none">○ Review of vector spaces, eigenvalues, SVD, Jordan form○ Matrix decompositions (LU, QR, Cholesky, Schur)○ Tensor algebra: notation, operations, invariants○ Tensor applications: stress-strain, inertia, constitutive models○ Numerical linear algebra (conditioning, iterative solvers)• Applications: Structural analysis, continuum mechanics, control systems, data compression.	1	25%
II	Partial Differential Equations & Transform Methods <ul style="list-style-type: none">○ Classification of PDEs (elliptic, parabolic, hyperbolic)○ Separation of variables, eigenfunction expansions○ Green's functions for ODEs and PDEs○ Integral transforms (Fourier, Laplace, Hankel) for PDEs○ Introduction to finite element and finite	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	volume concepts • Applications: Heat transfer, wave propagation, fluid dynamics, signal processing.		
III	Calculus of Variations & Optimization <ul style="list-style-type: none">○ Functional derivatives, Euler–Lagrange equation○ Constraints (Lagrange multipliers, isoperimetric problems)○ Direct methods (Ritz, Galerkin)○ Optimal control theory (Pontryagin's principle, Hamiltonian formulation)○ Convex optimization basics (gradient descent, KKT conditions) • Applications: Optimal design, trajectory optimization, energy minimization, control systems.	1	25%
IV	Stochastic Processes & Uncertainty Quantification <ul style="list-style-type: none">○ Probability spaces, random variables, distributions○ Stochastic processes (Brownian motion, Poisson process, Markov chains)○ Itô calculus basics (stochastic differential equations)○ Uncertainty quantification (Monte Carlo, polynomial chaos, sensitivity analysis)○ Statistical estimation and regression for engineering data • Applications: Risk analysis, reliability engineering, random vibrations, financial engineering, signal noise modelling	1	25%

TEXT BOOKS:

- Kreyszig, E. – *Advanced Engineering Mathematics* (10th ed.) – Wiley.
- Strang, G. – *Linear Algebra and Its Applications* (5th ed.) – Cengage.
- Arfken, G.B., Weber, H.J., Harris, F.E. – *Mathematical Methods for Physicists* (7th ed.) – Academic Press.
- J.N. Reddy – *Applied Functional Analysis and Variational Methods in Engineering* – McGraw-Hill.
- Papoulis, A., & Pillai, S.U. – *Probability, Random Variables and Stochastic Processes* (4th ed.) – McGraw-Hill.

REFERENCE BOOKS:

- Riley, K.F., Hobson, M.P., Bence, S.J. – *Mathematical Methods for Physics and Engineering* (3rd ed.) – Cambridge.
- Gelfand, I.M., & Fomin, S.V. – *Calculus of Variations* – Dover.
- Oksendal, B. – *Stochastic Differential Equations: An Introduction with Applications* (6th ed.) – Springer.
- Holmes, M.H. – *Introduction to Numerical Methods in Differential Equations* – Springer.
- Gould, P. – *Introduction to Linear Elasticity* (for tensor applications) – Springer.

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

ONLINE RESOURCES:

- Coursera:
 - *Mathematics for Engineers Specialization* (The Hong Kong University of Science and Technology)
 - *Data Science Math Skills* (Duke University)

SUBJECT CODE: MTECE102

SUBJECT NAME: ADVANCED DIGITAL SIGNAL PROCESSING

Course Objectives:

- To provide an in-depth understanding of advanced digital signal processing techniques and algorithms.
- To develop skills in designing and implementing multirate, adaptive, and statistical signal processing systems.
- To apply DSP techniques in communication, speech, image, and biomedical signal processing.
- To prepare students for research and development in real-time DSP systems and emerging applications.

Course Outcomes: At the end of the course students shall be able to

CO1	Analyze and design multi rate signal processing systems for bandwidth and computational efficiency.
CO2	Implement adaptive filtering algorithms for noise cancellation, equalization, and system identification.
CO3	Apply statistical signal processing methods for signal estimation, detection, and spectral analysis.
CO4	Design and implement DSP algorithms for real-world applications in communications, audio, and biomedical domains.

Unit	Content	Credit	Weightage
I	Multi rate Signal Processing & Filter Banks Topics: <ul style="list-style-type: none">• Sampling Rate Conversion: Up-sampling, Down-sampling, Fractional Rate Conversion• Polyphase Decomposition and Efficient Structures• Multi rate Filter Banks: Analysis and Synthesis• Quadrature Mirror Filters (QMF), Perfect Reconstruction Filter Banks• Applications: Sub-band Coding, Wavelet Transform, Communication Systems	1	25%
II	Adaptive Signal Processing Topics: <ul style="list-style-type: none">• Adaptive Filter Structures: FIR, IIR, Lattice Filters• LMS and RLS Algorithms: Convergence, Stability, Computational Complexity• Applications: Noise Cancellation, Echo Cancellation, Channel Equalization• Blind Adaptive Algorithms: CMA, Sato	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	Algorithm <ul style="list-style-type: none"> • Neural Network-Based Adaptive Filtering 		
III	Statistical Signal Processing Topics: <ul style="list-style-type: none"> • Random Signals & Stochastic Processes: Autocorrelation, Power Spectral Density • Wiener Filtering & Linear Prediction • Spectral Estimation: Periodogram, Blackman-Tukey, AR/MA/ARMA Modeling • Detection & Estimation Theory: MAP, ML, MMSE Estimators • Applications: Radar, Sonar, Biomedical Signal Analysis 	1	25%
IV	DSP in Modern Applications Topics: <ul style="list-style-type: none"> • Real-Time DSP Implementation: Fixed-Point Arithmetic, Overflow Handling • DSP for Communications: OFDM, MIMO, Synchronization • Audio & Speech Processing: MFCC, Noise Reduction, Compression • Image & Video Processing: 2D Filtering, Compression, Enhancement • Hardware Platforms: DSP Processors, FPGA, Embedded Implementation 	1	25%

TEXT BOOKS:

- Proakis, J.G., & Manolakis, D.G. – *Digital Signal Processing: Principles, Algorithms, and Applications* – Pearson.
- Oppenheim, A.V., & Schafer, R.W. – *Discrete-Time Signal Processing* – Pearson.
- Haykin, S. – *Adaptive Filter Theory* – Prentice Hall.
- Vetterli, M., Kovačević, J., & Goyal, V.K. – *Foundations of Signal Processing* – Cambridge.

REFERENCE BOOKS:

- Mitra, S.K. – *Digital Signal Processing: A Computer-Based Approach* – McGraw-Hill.
- Diniz, P.S.R. – *Adaptive Filtering: Algorithms and Practical Implementation* – Springer.
- Kay, S.M. – *Fundamentals of Statistical Signal Processing* – Prentice Hall.
- Lyons, R.G. – *Understanding Digital Signal Processing* – Pearson.

ONLINE RESOURCES:

- NPTEL: *Advanced Digital Signal Processing* (IIT Madras, IIT Kharagpur)
- Coursera: *Digital Signal Processing Specialization* (École Polytechnique Fédérale de Lausanne)
- edX: *Signal Processing and Systems* (MITx)
- IEEE Xplore: Journals – *IEEE Transactions on Signal Processing*, *IEEE Signal Processing Letters*
- MATLAB/Simulink: DSP System Toolbox, Signal Processing Toolbox, Simulink
- Python Libraries: NumPy, SciPy, Librosa, PySDR

PRACTICAL LIST:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

1. Multi rate System Design
 - Task: Design a 3-level wavelet decomposition and reconstruction system using filter banks. Apply to image compression and evaluate PSNR.
2. Adaptive Noise Cancellation
 - Task: Implement an LMS-based adaptive noise canceller for speech enhancement. Use real recorded noisy speech and evaluate SNR improvement.
3. Spectral Analysis of Non-Stationary Signals
 - Task: Use Short-Time Fourier Transform (STFT) and Wigner-Ville Distribution to analyze chirp and EEG signals. Compare time-frequency resolution.
4. Real-Time DSP Implementation
 - Task: Implement a real-time FIR filter on a DSP kit (TI C6713/STM32) or FPGA. Process audio input in real-time and analyze latency and throughput.

SUBJECT CODE: MTECE103

SUBJECT NAME: ADVANCED COMMUNICATION SYSTEMS

Course Objectives:

- To provide an advanced understanding of modern digital communication techniques, modulation schemes, and system performance analysis.
- To analyze and design wireless communication systems, including MIMO, OFDM, and spread spectrum technologies.
- To study advanced topics in coding, synchronization, and equalization for reliable communication in fading channels.
- To prepare students for research and development in 5G/6G, satellite, optical, and software-defined radio systems.

Course Outcomes: At the end of the course students shall be able to

CO1	Analyze and design advanced digital modulation and demodulation schemes for AWGN and fading channels.
CO2	Model and evaluate performance of MIMO, OFDM, and spread spectrum systems.
CO3	Design and implement channel coding, synchronization, and equalization techniques for reliable communication.
CO4	Apply advanced communication concepts to modern systems like 5G, satellite, and cognitive radio networks.

Unit	Content	Credit	Weightage
I	Advanced Digital Modulation & Demodulation Topics: <ul style="list-style-type: none">• Review of Digital Modulation: ASK, PSK, FSK, QAM• Continuous Phase Modulation (CPM), GMSK• Non-Coherent Detection, Differential Modulation• Performance Analysis in AWGN & Fading Channels: BER, SER, Outage Probability• Optimum Receivers: Matched Filter, Maximum	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	Likelihood Detection <ul style="list-style-type: none">• Applications: Satellite Communication, Deep Space Communication		
II	MIMO & OFDM Systems Topics: <ul style="list-style-type: none">• MIMO Channel Capacity: Rayleigh & Rician Channels• Space-Time Coding: Alamouti Scheme, OSTBC, V-BLAST• Beamforming & Spatial Multiplexing• OFDM Principles: IFFT/FFT, Cyclic Prefix, PAPR Reduction• OFDMA, SC-FDMA• Applications: 4G/5G, Wi-Fi 6, Massive MIMO	1	25%
III	Channel Coding & Advanced Receiver Techniques Topics: <ul style="list-style-type: none">• Advanced Channel Coding: Turbo Codes, LDPC, Polar Codes• Iterative Decoding: BCJR Algorithm, Belief Propagation• Synchronization: Carrier, Symbol, Frame Synchronization• Equalization: Linear, Decision Feedback, Adaptive Equalizers• Blind Equalization & Channel Estimation• Applications: Optical Communication, Underwater Acoustic Communication	1	25%
IV	Emerging Communication Technologies Topics: <ul style="list-style-type: none">• Cognitive Radio & Dynamic Spectrum Access• Ultra-Wideband (UWB) Communication• Millimeter Wave & Terahertz Communication• Visible Light Communication (VLC)• Satellite & Deep Space Networks• Software-Defined Radio (SDR) Implementation	1	25%

TEXT BOOKS:

- Proakis, J.G., & Salehi, M. – *Digital Communications* – McGraw-Hill.
- Goldsmith, A. – *Wireless Communications* – Cambridge University Press.
- Tse, D., & Viswanath, P. – *Fundamentals of Wireless Communication* – Cambridge.
- Haykin, S. – *Digital Communication Systems* – Wiley.

REFERENCE BOOKS:

- Rappaport, T.S. – *Wireless Communications: Principles and Practice* – Prentice Hall.
- Barry, J.R., Lee, E.A., & Messerschmitt, D.G. – *Digital Communication* – Springer.
- Sklar, B. – *Digital Communications: Fundamentals and Applications* – Pearson.
- Molisch, A.F. – *Wireless Communications* – Wiley-IEEE Press.

ONLINE RESOURCES:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- NPTEL: *Advanced Digital Communication* (IIT Bombay, IIT Kharagpur)
- Coursera: *Wireless Communications Specialization* (University of Colorado Boulder)
- edX: *Communication Systems* (MITx), *5G for Beginners* (NYU)
- IEEE Xplore: *IEEE Transactions on Communications*, *IEEE Wireless Communications Letters*
- GNU Radio: Open-source SDR platform
- MATLAB: Communications Toolbox, 5G Toolbox, WLAN Toolbox

PRACTICAL LIST:

- 1. Digital Modulation & BER Analysis
Task: Implement and compare BER performance of BPSK, QPSK, 16-QAM, and 64-QAM in AWGN and Rician fading channels using MATLAB.
- 2. MIMO-OFDM System Simulation
Task: Simulate a 4x4 MIMO-OFDM system with zero-forcing and MMSE equalizers. Analyze spectral efficiency and BER under frequency-selective fading.
- 3. Turbo Code Implementation
Task: Design a turbo encoder and iterative decoder (MAP/Log-MAP). Evaluate performance over AWGN and Rayleigh channels and plot BER vs. Eb/N0.
- 4. SDR-Based Cognitive Radio
Task: Using GNU Radio and USRP, implement energy detection-based spectrum sensing and demonstrate adaptive modulation switching between BPSK and QPSK.

SUBJECT CODE: MTECE104

SUBJECT NAME: RESEARCH METHODOLOGY AND TECHNICAL COMMUNICATION

Course Objectives:

- To equip engineering graduates with a structured approach to scientific inquiry and problem-solving.
- To develop proficiency in selecting and applying appropriate research methods for engineering investigations.
- To enhance technical communication skills for academia and industry.
- To foster an understanding of research ethics, scholarly publishing, and lifelong learning in research.

Course Outcomes: At the end of the course students shall be able to

CO1	Formulate a research problem, conduct systematic literature reviews, and develop a viable research proposal.
CO2	Design and execute appropriate research methodologies (experimental, numerical, analytical) with consideration for ethics and data integrity.
CO3	Apply statistical tools and software for data analysis, interpretation, and validation of research findings.
CO4	Produce high-quality technical documents (research papers, proposals, theses) and deliver effective technical presentations.

Unit	Content	Credit	Weightage
I	Foundations of Engineering Research & Problem Formulation <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">◦ Philosophy of research: inductive vs.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>deductive reasoning, scientific method in engineering.</p> <ul style="list-style-type: none">○ Types of engineering research: fundamental, applied, experimental, computational, empirical.○ Problem identification and formulation: research gap analysis.○ Literature review strategies: databases (Scopus, Web of Science, IEEE Xplore), citation management tools (Zotero, Mendeley), critical analysis of literature.○ Developing a research proposal: objectives, scope, significance, and work plan. <ul style="list-style-type: none">• Applications: Thesis topic selection, grant proposal writing, project planning.		
II	<p>Research Design, Methods & Ethics</p> <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Research design: experimental, quasi-experimental, case study, modeling & simulation.○ Data collection methods: sensors, surveys, instrumentation, simulation outputs.○ Design of Experiments (DoE): factorial design, Taguchi methods, response surface methodology.○ Research ethics: plagiarism, fabrication/falsification, authorship, informed consent.○ Ethical approval process and responsible conduct of research (RCR).• Applications: Planning a lab/field experiment, setting up a CFD/FEA study, survey design.	1	25%
III	<p>Data Analysis, Statistics & Software Tools</p> <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Data preprocessing: outlier detection, missing data, normalization.○ Descriptive and inferential statistics: hypothesis testing (t-test, ANOVA), confidence intervals.○ Regression analysis: linear, multiple, logistic.○ Introduction to multivariate analysis and machine learning for engineering data.○ Software tools: MATLAB/Python (NumPy, SciPy, pandas), R, MiniTab.○ Data visualization principles: effective graphs, charts, and plots.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">Applications: Analyzing experimental results, validating computational models, interpreting sensor data.		
IV	<p>Technical Communication & Research Dissemination</p> <ul style="list-style-type: none">Topics:<ul style="list-style-type: none">Structure of technical documents: research papers, theses, technical reports.Writing strategies: clarity, conciseness, coherence, and argument development.Graphical abstracts, data presentation, and table/figure design.Oral presentations: conference talks, thesis defense, poster design.Publication process: journal selection, peer review, responding to reviewers.Intellectual Property Rights (IPR): patents, copyrights, licensing.Research dissemination: repositories, academic social networks (ResearchGate, LinkedIn), and impact metrics (h-index, citations).Applications: Paper writing, thesis compilation, conference presentation, patent filing.	1	25%

TEXT BOOKS:

- Kothari, C.R. – *Research Methodology: Methods and Techniques* (4th ed.) – New Age International.
- Day, R.A., and Gastel, B. – *How to Write and Publish a Scientific Paper* (9th ed.) – Greenwood.
- Montgomery, D.C. – *Design and Analysis of Experiments* (10th ed.) – Wiley.
- Alley, M. – *The Craft of Scientific Writing* (4th ed.) – Springer.

REFERENCE BOOKS:

- Bordens, K.S., and Abbott, B.B. – *Research Design and Methods: A Process Approach* (11th ed.) – McGraw-Hill.
- Wallwork, A. – *English for Writing Research Papers* (2nd ed.) – Springer.
- Box, G.E.P., Hunter, J.S., and Hunter, W.G. – *Statistics for Experimenters* (2nd ed.) – Wiley.
- IEEE Author Center Guides – *IEEE Publication Services and Products Board*.
- Laplante, P.A. – *Technical Writing: A Practical Guide for Engineers and Scientists* – CRC Press.

ONLINE RESOURCES:

- edX Courses:
 - "Principles of Statistical Analysis"* (Microsoft)
 - "How to Write and Publish a Scientific Paper"* (KU Leuven)

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-II

SUBJECT CODE: MTECE201

SUBJECT NAME: VLSI DESIGN AND VERIFICATION

Course Objectives:

- To provide a comprehensive understanding of modern VLSI design flow from system specification to physical layout.
- To develop skills in RTL design, synthesis, static timing analysis, and physical design using industry-standard tools.
- To introduce verification methodologies including SystemVerilog, UVM, and formal verification techniques.
- To prepare students for careers in ASIC/FPGA design, verification, and physical implementation in the semiconductor industry.

Course Outcomes: At the end of the course students shall be able to

CO1	Design and synthesize digital circuits using HDLs (Verilog/System Verilog) for FPGA and ASIC targets.
CO2	Perform static timing analysis, power optimization, and physical design of CMOS digital circuits.
CO3	Develop verification environments using System Verilog and UVM for functional verification of complex digital systems.
CO4	Apply low-power design techniques and understand DFT and physical verification concepts for tape-out readiness.

Unit	Content	Credit	Weightage
I	Digital Design with HDLs & Synthesis Topics: <ul style="list-style-type: none">• Verilog/System Verilog: RTL coding, behavioral vs. structural modeling• Combinational & Sequential Design: FSMs, pipelines, data path design• Logic Synthesis: Constraints, technology mapping, optimization• FPGA Implementation: Architecture, mapping, place-and-route• ASIC vs. FPGA Design Flow• Tools: Xilinx Vivado, Intel Quartus, Synopsys Design Compiler	1	25%
II	CMOS Circuit Design & Physical Layout Topics: <ul style="list-style-type: none">• CMOS Fabrication Process: CMOS n-well, p-well, SOI• CMOS Inverter: Static and dynamic characteristics, noise margins• Combinational & Sequential CMOS Circuits• Physical Design: Floor planning, placement,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>routing, clock tree synthesis</p> <ul style="list-style-type: none">• DRC, LVS, and Parasitic Extraction• Tools: Cadence Virtuoso, Mentor Graphics Calibre		
III	<p>Verification Methodologies with System Verilog & UVM</p> <p>Topics:</p> <ul style="list-style-type: none">• System Verilog for Verification: Data types, classes, randomization, coverage• UVM Architecture: Components, phases, sequences, drivers, monitors• Assertion-Based Verification: SVA (System Verilog Assertions)• Functional Coverage and Scoreboard Design• Emulation & Hardware Acceleration• Tools: Mentor QuestaSim, Synopsys VCS, Cadence Incisive	1	25%
IV	<p>Advanced Topics & Design for Testability</p> <p>Topics:</p> <ul style="list-style-type: none">• Low-Power Design Techniques: Clock gating, power gating, DVFS• Design for Testability (DFT): Scan insertion, ATPG, BIST• Formal Verification: Equivalence checking, model checking• Mixed-Signal Design Considerations• System-on-Chip (SoC) Integration• Emerging Technologies: 3D ICs, FinFET, AI accelerators	1	25%

TEXT BOOKS:

- Rabaey, J.M., Chandrakasan, A., & Nikolić, B. – *Digital Integrated Circuits: A Design Perspective* – Pearson.
- Palnitkar, S. – *System Verilog for Verification* – Springer.
- Weste, N.H.E., & Harris, D.M. – *CMOS VLSI Design: A Circuits and Systems Perspective* – Pearson.
- Bhasker, J. – *A Verilog HDL Primer* – Star Galaxy Publishing.

REFERENCE BOOKS:

- Smith, M.J.S. – *Application-Specific Integrated Circuits* – Addison-Wesley.
- Sutherland, S., Mills, D. – *Verilog and System Verilog Gotchas* – Springer.
- Mead, C., & Conway, L. – *Introduction to VLSI Systems* – Addison-Wesley.
- Bergeron, J. – *Writing Testbenches using System Verilog* – Springer.

ONLINE RESOURCES:

- NPTEL: *VLSI Design* (IIT Madras, IIT Kharagpur)
- Coursera: *VLSI CAD Part I & II* (University of Illinois)
- edX: *FPGA Design for Embedded Systems* (University of Colorado)
- IEEE Xplore: *IEEE Transactions on VLSI Systems, IEEE Design & Test*
- EDA Tools: Xilinx Vivado (free), Intel Quartus (free), Cadence (academic licenses)

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- Open Source: OpenROAD, Yosys, GTKWave

PRACTICAL LIST:

- 1. RTL Design & FPGA Implementation
- Task: Design a UART controller with FIFO in Verilog. Synthesize and implement on FPGA (Basys3/Nexys). Verify using serial terminal.
 - 1. CMOS Layout & Simulation
- Task: Design and layout a 4x1 MUX using CMOS in Cadence Virtuoso. Perform pre- and post-layout simulation and compare delays.
- UVM Testbench Development
- Task: Create a UVM testbench for a PCIe endpoint model. Implement sequences, functional coverage, and assertions for packet integrity.
 - 1. Low-Power & DFT Implementation
- Task: Integrate clock gating and scan chain insertion in a previously designed ALU. Use Synopsys DFT Compiler and TetraMAX for ATPG.

SUBJECT CODE: MTECE202

SUBJECT NAME: EMBEDDED AND REAL TIME SYSTEMS

Course Objectives:

- To provide an in-depth understanding of embedded system architecture, design methodologies, and real-time operating systems.
- To develop skills in designing, programming, and optimizing embedded systems for real-time applications.
- To study scheduling algorithms, task synchronization, and performance analysis in real-time systems.
- To prepare students for careers in embedded software development, IoT, automotive systems, and industrial automation.

Course Outcomes: At the end of the course students shall be able to

CO1	Design and implement embedded systems using microcontrollers, RTOS, and peripheral interfaces.
CO2	Apply real-time scheduling algorithms and analyze system performance using timing constraints.
CO3	Develop and optimize embedded firmware for low-power, safety-critical, and networked applications.
CO4	Integrate embedded systems with IoT platforms, automotive networks, and industrial communication protocols.

Unit	Content	Credit	Weightage
I	Embedded System Architecture & Design Topics: <ul style="list-style-type: none">• Embedded System Components: Microcontrollers, MPUs, DSPs, Memory, Peripherals• System-on-Chip (SoC) and FPGA-based Embedded Systems• Embedded Design Lifecycle: Requirements,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>Modeling, Implementation, Testing</p> <ul style="list-style-type: none">Interfacing: GPIO, ADC/DAC, Timers, PWM, Communication Interfaces (UART, SPI, I2C)Power Management & Low-Power Design TechniquesTools: ARM Cortex-M Development Kits, STM32CubeIDE, Keil MDK		
II	<p>Real-Time Operating Systems (RTOS) & Scheduling</p> <p>Topics:</p> <ul style="list-style-type: none">RTOS Concepts: Tasks, Semaphores, Mutexes, Queues, MailboxesTask Scheduling: Rate Monotonic, Earliest Deadline First (EDF), Priority InheritanceKernel Services: Interrupt Handling, Context Switching, Memory ManagementRTOS Implementation: FreeRTOS, Zephyr, VxWorks, µC/OSPerformance Metrics: Response Time, Jitter, Latency, ThroughputReal-Time Linux & POSIX RT Extensions	1	25%
III	<p>Embedded Software Development & Optimization</p> <p>Topics:</p> <ul style="list-style-type: none">Embedded C/C++ Programming: Bit manipulation, ISRs, DMACompiler Optimizations: Loop unrolling, inline functions, memory alignmentDebugging & Profiling: JTAG, SWD, Logic Analyzers, Performance CountersFirmware Security: Secure boot, encryption, secure firmware updatesModel-Based Design with MATLAB/SimulinkHardware/Software Co-Design	1	25%
IV	<p>Advanced Embedded Applications & Communication</p> <p>Topics:</p> <ul style="list-style-type: none">IoT Embedded Systems: MQTT, CoAP, LoRaWAN, NB-IoTAutomotive Embedded Systems: CAN, LIN, AUTOSARIndustrial Communication: Modbus, PROFINET, EtherCATWireless Embedded Systems: Bluetooth Low Energy, Zigbee, ThreadSafety-Critical Systems: DO-178C, IEC 61508, MISRA CEdge AI & Embedded Machine Learning (TinyML)	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

TEXT BOOKS:

- Barr, M., & Massa, A. – *Programming Embedded Systems* – O'Reilly.
- Buttazzo, G.C. – *Hard Real-Time Computing Systems* – Springer.
- Noergaard, T. – *Embedded Systems Architecture* – Elsevier.
- Wolf, W. – *Computers as Components: Principles of Embedded Computing System Design* – Morgan Kaufmann.

REFERENCE BOOKS:

- Simon, D.E. – *An Embedded Software Primer* – Pearson.
- Laplante, P.A. – *Real-Time Systems Design and Analysis* – Wiley.
- Yiu, J. – *The Definitive Guide to ARM Cortex-M Processors* – Elsevier.
- Ganssle, J. – *The Art of Designing Embedded Systems* – Newnes.

ONLINE RESOURCES:

- NPTEL: *Embedded Systems Design* (IIT Kharagpur, IIT Bombay)
- Coursera: *Embedded Systems Specialization* (University of Colorado Boulder)
- edX: *Real-Time Embedded Systems* (UT Austin), *Introduction to IoT* (Curtin University)
- IEEE Xplore: *IEEE Transactions on Embedded Computing Systems*, *IEEE Embedded Systems Letters*
- Platforms: ARM Developer, STMicroelectronics STM32Cube, Espressif IoT Development Framework
- Simulation: QEMU, Simulink Embedded Coder, Wireshark for protocol analysis

PRACTICAL LIST:

- 1. Embedded System Design with STM32
- Task: Build a digital oscilloscope using STM32's ADC and DMA. Display waveform on TFT screen and export data via USB-CDC.
 1. RTOS-Based Multi-Tasking System
- Task: Implement a real-time data logger with FreeRTOS using SD card and RTC. Tasks include sensor sampling, file writing, and status display.
- Optimized Embedded Control System
- Task: Develop a closed-loop motor control system using PID and PWM. Use CMSIS-DSP for filter implementation and analyze CPU load using profiling tools.
 1. IoT-Enabled Embedded System
- Task: Create a Wi-Fi-enabled environmental monitor using ESP32. Stream sensor data to a cloud dashboard (ThingSpeak/Ubidots) and implement OTA updates.

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SUBJECT CODE: MTECE203

SUBJECT NAME: ADVANCED ANTENNA AND RF ENGINEERING

Course Objectives:

- To provide an advanced understanding of antenna theory, design principles, and radiation mechanisms for modern wireless systems.
- To develop skills in designing, simulating, and measuring antennas and RF circuits for various frequency bands and applications.
- To analyze and design RF/microwave components including filters, amplifiers, mixers, and matching networks.
- To prepare students for research and development in 5G/6G antennas, MIMO systems, radar, and satellite communication technologies.

Course Outcomes: At the end of the course students shall be able to

CO1	Design and analyze various antenna types including microstrip, array, and wideband antennas using electromagnetic simulation tools.
CO2	Model and design RF/microwave passive and active components using S-parameters and impedance matching techniques.
CO3	Analyze and optimize MIMO antenna systems, beamforming networks, and phased arrays for modern wireless applications.
CO4	Conduct antenna measurements, evaluate performance metrics, and integrate antennas into communication and radar systems.

Unit	Content	Credit	Weightage
I	Antenna Theory & Design Fundamentals Topics: <ul style="list-style-type: none">• Review of Antenna Fundamentals: Radiation patterns, gain, directivity, polarization, impedance bandwidth• Antenna Parameters: Return loss, VSWR, efficiency, Friis transmission equation• Wire Antennas: Dipole, monopole, loop antennas• Aperture Antennas: Horn, slot, reflector antennas• Microstrip Antennas: Patch, PIFA, design equations, feeding techniques• Tools: CST Studio Suite, ANSYS HFSS, FEKO	1	25%
II	Antenna Arrays & Phased Arrays Topics: <ul style="list-style-type: none">• Array Theory: Linear, planar, and circular arrays• Array Factor, Beamforming, and Beam Steering• Phased Array Antennas: Time delay vs. phase shift, scanning limitations• Smart Antennas: Adaptive arrays, digital beamforming	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none"> MIMO Antennas: Diversity, mutual coupling, correlation coefficient Applications: Radar, satellite, 5G massive MIMO 		
III	<p>RF/Microwave Circuit Design</p> <p>Topics:</p> <ul style="list-style-type: none"> Transmission Lines & Waveguides: Smith chart, impedance matching S-Parameters & Network Analysis RF Passive Components: Filters, couplers, power dividers, baluns RF Active Components: LNA, PA, mixers, oscillators Low-Noise & Power Amplifier Design Tools: Keysight ADS, AWR Microwave Office, Simulink RF Blockset 	1	25%
IV	<p>Advanced Antenna Systems & Measurements</p> <p>Topics:</p> <ul style="list-style-type: none"> Wideband & Multiband Antennas: Fractal, log-periodic, Vivaldi antennas Reconfigurable Antennas: Frequency, pattern, polarization reconfiguration Millimeter-Wave & THz Antennas Antenna Measurement Techniques: Anechoic chamber, near-field/far-field, gain measurement EMC/EMI Considerations in Antenna Design Antennas for IoT, UAVs, and Wearable Systems 	1	25%

TEXT BOOKS:

- Balanis, C.A. – *Antenna Theory: Analysis and Design* – Wiley.
- Pozar, D.M. – *Microwave Engineering* – Wiley.
- Stutzman, W.L., & Thiele, G.A. – *Antenna Theory and Design* – Wiley.
- Ludwig, R., & Bretchko, P. – *RF Circuit Design: Theory and Applications* – Pearson.

REFERENCE BOOKS:

- Collin, R.E. – *Foundations for Microwave Engineering* – Wiley-IEEE Press.
- Volakis, J.L. – *Antenna Engineering Handbook* – McGraw-Hill.
- Gonzalez, G. – *Microwave Transistor Amplifiers: Analysis and Design* – Pearson.
- Kraus, J.D., & Marhefka, R.J. – *Antennas for All Applications* – McGraw-Hill.

ONLINE RESOURCES:

- NPTEL: *Antenna Theory & Practice* (IIT Bombay, IIT Kharagpur)
- Coursera: *RF and Millimeter-Wave Circuit Design* (Eindhoven University)
- edX: *Antennas: From Theory to Practice* (EPFLx)
- IEEE Xplore: *IEEE Transactions on Antennas and Propagation, IEEE Microwave Magazine*
- Simulation Tools: CST Studio Suite (student license), ANSYS HFSS (academic), Keysight ADS (trial)
- Measurement Resources: ARRL Antenna Book, online Smith chart tools

PRACTICAL LIST:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- 1. Microstrip Antenna Design & Simulation
- Task: Design, simulate, and optimize a dual-band microstrip antenna for Wi-Fi (2.4/5 GHz). Fabricate using PCB and measure return loss with VNA.
 - 1. Phased Array Beamforming Simulation
- Task: Simulate an 8-element phased array antenna with beam steering from -30° to $+30^\circ$. Analyze sidelobe levels and beamwidth variation.
- 3. RF Filter & Amplifier Co-Design
- Task: Design a bandpass filter and a two-stage LNA for a 3.5 GHz 5G band. Simulate cascaded performance including noise figure and linearity.
 - 1. Reconfigurable Antenna with Measurement
- Task: Design and fabricate a PIN diode-based reconfigurable antenna. Measure S11 and radiation patterns in both states and compare with simulations.

SUBJECT CODE: MTECE204

SUBJECT NAME: IOT AND SENSOR NETWORKS

Course Objectives:

- To provide a comprehensive understanding of IoT architecture, protocols, and sensor network design principles.
- To develop skills in designing and deploying IoT systems with wireless sensor networks, edge computing, and cloud integration.
- To analyze security, scalability, and energy efficiency in IoT networks.
- To prepare students for careers in IoT solution development, smart cities, industrial IoT, and connected healthcare.

Course Outcomes: At the end of the course students shall be able to

CO1	Design and implement IoT architectures using sensors, microcontrollers, and communication modules.
CO2	Analyze and apply IoT communication protocols, network topologies, and data management techniques.
CO3	Develop secure, scalable, and energy-efficient IoT solutions with edge and cloud integration.
CO4	Evaluate and deploy IoT systems for real-world applications in smart environments, healthcare, and industry.

Unit	Content	Credit	Weightage
I	IoT Architecture & Sensor Fundamentals Topics: <ul style="list-style-type: none">• IoT Ecosystem: Layers, components, and reference architectures• Sensor Types & Characteristics: Temperature, humidity, motion, environmental, biosensors• Sensor Interfacing: Analog/digital, signal conditioning, calibration• Embedded Platforms for IoT: Arduino, ESP32, Raspberry Pi, ARM Cortex-M• IoT Development Boards & Kits	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none"> Introduction to Sensor Networks & WSN Architecture 		
II	<p>IoT Communication Protocols & Networks</p> <p>Topics:</p> <ul style="list-style-type: none"> Short-Range Protocols: Bluetooth/BLE, Zigbee, Z-Wave, NFC Long-Range Protocols: LoRaWAN, Sigfox, NB-IoT, LTE-M IP-Based Protocols: MQTT, CoAP, HTTP/HTTPS, WebSocket Network Topologies: Star, mesh, cluster-tree, hybrid IoT Gateway Design & Edge Computing Network Simulation Tools: NS-3, OMNeT++, Cooja** 	1	25%
III	<p>IoT Data Management, Security & Cloud Integration</p> <p>Topics:</p> <ul style="list-style-type: none"> IoT Data Formats: JSON, XML, Protocol Buffers Edge vs. Cloud Processing: Fog computing, edge analytics IoT Cloud Platforms: AWS IoT, Azure IoT, Google Cloud IoT IoT Security: Authentication, encryption, secure boot, OTA updates Privacy & Trust in IoT Systems Blockchain for IoT Security 	1	25%
IV	<p>Advanced IoT Applications & Case Studies</p> <ul style="list-style-type: none"> Smart Cities: Traffic management, waste management, smart grids Industrial IoT (IIoT): Predictive maintenance, SCADA integration, Industry 4.0 Healthcare IoT: Wearable devices, remote patient monitoring, telemedicine Agricultural IoT: Precision farming, drone-based monitoring IoT in Autonomous Systems: Drones, autonomous vehicles Future Trends: 6G, AIoT, Digital Twins, IoT standardization 	1	25%

TEXT BOOKS:

- Verma, G., & Srivastava, S. – *Internet of Things: Architecture and Design Principles* – McGraw-Hill.
- Shelby, Z., & Bormann, C. – *LoWPAN: The Wireless Embedded Internet* – Wiley.
- Mazidi, M.A., et al. – *IoT-Based Embedded Systems* – Pearson.
- Bahga, A., & Madisetti, V. – *Internet of Things: A Hands-On Approach* – VPT.

REFERENCE BOOKS:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- Stallings, W. – *Wireless Communications & Networks* – Pearson.
- Ganz, A., et al. – *IoT Security: Advances in Authentication* – Wiley.
- Miorandi, D., et al. – *Internet of Things: From Research and Innovation to Market Deployment* – River Publishers.
- Mackenzie, A. – *Wireless Networking: Know It All* – Newnes.

ONLINE RESOURCES:

- NPTEL: *Internet of Things* (IIT Kharagpur, IIT Bombay)
- Coursera: *IoT Specialization* (University of California, Irvine)
- edX: *Introduction to IoT* (Curtin University), *IoT Systems and Industrial Automation* (TU Delft)
- IEEE Xplore: *IEEE IoT Journal*, *IEEE Sensors Journal*
- Cloud Platforms: AWS IoT, Azure IoT Hub, Google Cloud IoT (free tiers)
- Simulation: Cisco Packet Tracer IoT, NS-3, Contiki-NG/Cooja

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-III

SUBJECT CODE: MTECE301

SUBJECT NAME: ADVANCED MICROWAVE ENGINEERING

Course Objectives:

- To provide an advanced understanding of microwave circuit theory, transmission lines, waveguides, and electromagnetic wave propagation.
- To design, analyze, and simulate microwave passive and active components for communication, radar, and satellite systems.
- To develop skills in microwave measurement techniques, network analysis, and microwave system integration.
- To prepare students for research and industry roles in RF/microwave engineering, 5G/6G systems, and aerospace applications.

Course Outcomes: At the end of the course students shall be able to

CO1	Analyze and design microwave transmission lines, waveguides, and planar structures using electromagnetic theory.
CO2	Design, simulate, and optimize microwave passive components including filters, couplers, and power dividers.
CO3	Model and design microwave active circuits such as amplifiers, oscillators, and mixers using S-parameters and nonlinear analysis.
CO4	Conduct microwave measurements, characterize components, and integrate subsystems for practical applications.

Unit	Content	Credit	Weightage
I	Microwave Transmission Lines & Waveguides Topics: <ul style="list-style-type: none">• Review of TEM, TE, TM Modes• Planar Transmission Lines: Microstrip, Stripline, Coplanar Waveguide (CPW), Slotline• Waveguide Theory: Rectangular, Circular, Dielectric Waveguides• Impedance Matching Techniques: Quarter-wave, stub matching, broadband matching• Smith Chart Applications in Microwave Design• Tools: CST Microwave Studio, ANSYS HFSS	1	25%
II	Microwave Passive Components Topics: <ul style="list-style-type: none">• Microwave Resonators: Cavity, Dielectric, Planar Resonators• Filters: Low-pass, High-pass, Bandpass, Bandstop (Chebyshev, Butterworth, Elliptic)• Couplers: Directional, Hybrid (Branch-line, Rat-race), Lange Coupler	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none"> Power Dividers & Combiners: Wilkinson, T-junction Ferrite Devices: Circulators, Isolators Tools: Keysight ADS, AWR Microwave Office 		
III	<p>Microwave Active Circuits</p> <p>Topics:</p> <ul style="list-style-type: none"> Microwave Transistors: HEMT, HBT, MESFET, CMOS RF Low-Noise Amplifier (LNA) Design Power Amplifier (PA) Design: Classes A, B, AB, F, Doherty Oscillators: DRO, VCO, Phase Noise Analysis Mixers & Frequency Converters Nonlinear Analysis & Harmonic Balance Simulation 	1	25%
IV	<p>Microwave Systems & Measurements</p> <p>Topics:</p> <ul style="list-style-type: none"> Microwave Measurement Techniques: VNA calibration, power, noise figure, phase noise Antenna Measurements in Microwave Bands Microwave System Integration: Radar, Satellite Transponders, 5G mmWave Systems Microwave Packaging & Thermal Management EMI/EMC Considerations in Microwave Design Emerging Topics: Metamaterials, SIW, RF MEMS, Microwave Photonics 	1	25%

TEXT BOOKS:

- Pozar, D.M. – *Microwave Engineering* – Wiley.
- Collin, R.E. – *Foundations for Microwave Engineering* – Wiley-IEEE Press.
- Ludwig, R., & Bretschko, P. – *RF Circuit Design: Theory and Applications* – Pearson.
- Chang, K. – *RF and Microwave Wireless Systems* – Wiley.

REFERENCE BOOKS:

- Gonzalez, G. – *Microwave Transistor Amplifiers: Analysis and Design* – Pearson.
- Matthaei, G., Young, L., & Jones, E.M.T. – *Microwave Filters, Impedance-Matching Networks, and Coupling Structures* – Artech House.
- Bahl, I., & Bhartia, P. – *Microwave Solid State Circuit Design* – Wiley.
- Hong, J.S., & Lancaster, M.J. – *Microstrip Filters for RF/Microwave Applications* – Wiley.

ONLINE RESOURCES:

- NPTEL: *Microwave Engineering* (IIT Kharagpur, IIT Bombay)
- Coursera: *RF and Microwave Circuit Design* (Eindhoven University of Technology)
- edX: *Microwave Engineering and Antennas* (EPFLx)
- IEEE Xplore: *IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Magazine*
- Simulation Tools: ANSYS HFSS, CST Studio Suite, Keysight ADS (student versions)
- Measurement Resources: Keysight/Agilent Application Notes, ARRL RFI Book

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

PRACTICAL LIST:

- 1. Microstrip Line & Waveguide Transition Design
- Task: Design a microstrip to waveguide transition for Ku-band (12–18 GHz). Simulate in HFSS, optimize for bandwidth >2 GHz, and fabricate using aluminum waveguide and PCB.
 1. Bandpass Filter Design & Fabrication
- Task: Design, simulate, and fabricate a microstrip bandpass filter at 3.5 GHz for 5G applications. Measure S-parameters and compare with ADS simulations.
- 3. Low-Noise Amplifier (LNA) Design
- Task: Design an LNA at 10 GHz using GaN HEMT. Simulate gain, noise figure, and stability. Implement on PCB and measure performance with VNA.
 1. Microwave System Integration & Measurement
- Task: Integrate a filter, LNA, and mixer into a receiver front-end at C-band (4–8 GHz). Perform system-level measurements including noise figure and dynamic range.

SUBJECT CODE: MTECE302

SUBJECT NAME: AI AND MACHINE LEARNING FOR ECE

Course Objectives:

- To introduce fundamental and advanced concepts of artificial intelligence and machine learning relevant to electronics and communication engineering.
- To develop skills in applying machine learning algorithms for signal processing, communication systems, and embedded intelligence.
- To implement deep learning models for image, speech, and sensor data processing in real-time embedded systems.
- To prepare students for roles in AI-driven ECE domains such as autonomous systems, IoT intelligence, and smart communication networks.

Course Outcomes: At the end of the course students shall be able to

CO1	Apply classical and modern machine learning algorithms for classification, regression, and clustering in engineering datasets.
CO2	Design and implement deep neural networks for computer vision, speech recognition, and signal processing tasks.
CO3	Optimize ML models for embedded deployment using model compression, quantization, and hardware-aware training.
CO4	Develop AI-enhanced solutions for ECE applications such as wireless communication, robotics, IoT, and smart sensing.

Unit	Content	Credit	Weightage
I	Foundations of Machine Learning Topics: <ul style="list-style-type: none">Introduction to AI & ML: Supervised vs. unsupervised learning, reinforcement learningLinear & Logistic RegressionDecision Trees, Random Forests, Gradient BoostingClustering Algorithms: K-means, DBSCAN,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>hierarchical clustering</p> <ul style="list-style-type: none">• Dimensionality Reduction: PCA, t-SNE, LDA• Evaluation Metrics: Accuracy, precision, recall, F1-score, ROC-AUC• Tools: Python (Scikit-learn, Pandas, NumPy), MATLAB		
II	<p>Deep Learning Fundamentals</p> <p>Topics:</p> <ul style="list-style-type: none">• Neural Networks: Perceptron, MLP, activation functions, backpropagation• Convolutional Neural Networks (CNNs) for image and signal processing• Recurrent Neural Networks (RNNs), LSTMs, GRUs for time-series data• Autoencoders & Generative Models: VAEs, GANs• Transfer Learning & Fine-tuning• Frameworks: TensorFlow, PyTorch, Keras	1	25%
III	<p>ML for Signal Processing & Communications</p> <p>Topics:</p> <ul style="list-style-type: none">• ML for Wireless Communications: Channel estimation, symbol detection, beamforming• AI-based Spectrum Sensing & Cognitive Radio• Signal Denoising & Enhancement using Deep Learning• Speech & Audio Processing: ASR, speaker identification, noise suppression• Sensor Data Analytics for IoT• Reinforcement Learning for Network Optimization	1	25%
IV	<p>Embedded AI & Edge Intelligence</p> <p>Topics:</p> <ul style="list-style-type: none">• Model Optimization: Pruning, quantization, knowledge distillation• Hardware for AI: GPUs, TPUs, NPUs, FPGAs for inference• Embedded ML Frameworks: TensorFlow Lite, PyTorch Mobile, ONNX Runtime• Tiny ML: Machine learning on microcontrollers (ARM Cortex-M, ESP32)• AI in Autonomous Systems: Drones, robotics, ADAS• Ethics & Explainability in AI	1	25%

TEXT BOOKS:

- Bishop, C.M. – *Pattern Recognition and Machine Learning* – Springer.
- Goodfellow, I., Bengio, Y., & Courville, A. – *Deep Learning* – MIT Press.

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- Haykin, S. – *Neural Networks and Learning Machines* – Pearson.
- Murphy, K.P. – *Machine Learning: A Probabilistic Perspective* – MIT Press.

REFERENCE BOOKS:

- Géron, A. – *Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow* – O'Reilly.
- Raschka, S., & Mirjalili, V. – *Python Machine Learning* – Packt.
- Zhang, Z. – *Machine Learning for Signal Processing* – Cambridge.
- Sutton, R.S., & Barto, A.G. – *Reinforcement Learning: An Introduction* – MIT Press.

ONLINE RESOURCES:

- NPTEL: *Machine Learning* (IIT Madras, IIT Kharagpur)
- Coursera: *Deep Learning Specialization Machine Learning* (Stanford)
- edX: *AI for Everyone Machine Learning with Python* (IBM)
- IEEE Xplore: *IEEE Transactions on Neural Networks and Learning Systems, IEEE Signal Processing Magazine*
- Cloud Platforms: Google Colab, Kaggle, AWS SageMaker (free tier)
- Hardware Platforms: NVIDIA Jetson, Google Coral, Raspberry Pi, STM32 AI

PRACTICAL LIST:

- 1. Classical ML for Signal Classification
- Task: Use Scikit-learn to classify radio signals (AM, FM, QPSK, etc.) from IQ data. Compare SVM, Random Forest, and XGBoost.
 - 1. CNN for Image & Signal Recognition
- Task: Train a CNN on the MNIST/CIFAR-10 dataset and adapt it for RF signal classification using spectrograms.
- 3. AI-Based Channel Estimation
- Task: Develop a deep learning model (CNN or RNN) for MIMO channel estimation and compare MSE with LS and MMSE estimators.
 - 1. TinyML Deployment on Embedded Hardware
- Task: Train a small neural network for gesture recognition using accelerometer data. Deploy on Arduino Nano 33 BLE Sense using TensorFlow Lite.