

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

MK University, Patan
Faculty of Engineering Technology,
Department of Civil Engineering

DIPLOMA (CIVIL ENGINEERING) SEM-I

SR NO .	COURSE TYPE	COURSE CODE	COURSE NAME	LECTUR E (HRS.)/WEEK	PRACTIC AL (HRS.)/WEEK	CREDITS	EXAMINATION		TOTAL MARKS
							INTERNA L	EXTERN AL	
1	MAJOR	DCE101	ENGINEERING MATHEMATICS-I	4	0	4	40	60	100
2	MAJOR	DCE102	ENGINEERING PHYSICS	4	2	6	90	60	150
3	MAJOR	DCE103	ENGINEERING CHEMISTRY	4	2	6	90	60	150
4	MAJOR	DCE104	ENGINEERING GRAPHICS & CAD	4	2	6	90	60	150
5	MINOR	DCE105	WORKSHOP PRACTICE	0	2	2	50	00	50
TOTAL				16	8	24	360	240	600

DIPLOMA (CIVIL ENGINEERING) SEM-II

SR NO .	COURSE TYPE	COURSE CODE	COURSE NAME	LECTU RE (HRS.)/WEEK	PRACTI CAL (HRS.)/WEEK	CREDIT S	EXAMINATION		TOTAL MARKS
							INTERNA L	EXTERN AL	
1	MAJOR	DCE201	ENGINEERING MATHEMATICS-II	4	0	4	40	60	100
2	MAJOR	DCE202	APPLIED MECHANICS	4	2	6	90	60	150
3	MAJOR	DCE203	BUILDING MATERIALS & CONSTRUCTION	4	2	6	90	60	150
4	MINOR	DCE204	SURVEYING & LEVELLING	4	2	6	90	60	150
5	SEC	DCE205	COMMUNICATION SKILL	2	0	2	00	50	50
TOTAL				18	6	24	310	290	600

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

DIPLOMA (CIVIL ENGINEERING) SEM-III									
SR NO .	COURSE TYPE	COURSE CODE	COURSE NAME	LECTU RE (HRS.)/ WEEK	PRACTI CAL (HRS.)/ WEEK	CREDIT S	EXAMINATION		TOTAL MARK S
							INTER NAL	EXTER NAL	
1	MAJOR	DCE301	STRENGTH OF MATERIALS	4	2	6	90	60	150
2	MAJOR	DCE302	CONCRETE TECHNOLOGY	4	2	6	90	60	150
3	MAJOR	DCE303	FLUID MECHANICS & HYDRAULIC MACHINES	4	2	6	90	60	150
4	MINOR	DCE304	INDUSTRIAL VISIT REPORT	0	2	2	50	00	50
5	IKS	DCE305	IKS-ANCIENT INDIAN ENGINEERING PRACTICE	0	2	2	50	00	50
TOTAL				12	10	22	370	180	550

DIPLOMA (CIVIL ENGINEERING) SEM-IV									
SR NO .	COUR S E TYPE	COURSE CODE	COURSE NAME	LECTU RE (HRS.)/ WEEK	PRACTI CAL (HRS.)/ WEEK	CREDIT S	EXAMINATION		TOTAL MARK S
							INTER NAL	EXTER NAL	
1	MAJOR	DCE401	STRUCTURAL ANALYSIS	4	2	6	90	60	150
2	MAJOR	DCE402	GEOTECHNICAL ENGINEERING	4	2	6	90	60	150
3	MAJOR	DCE403	COMPUTER FUNDAMENTALS & PROGRAMMING	4	0	4	40	60	100
4	MINOR	DCE404	ENVIRONMENTAL ENGINEERING	4	0	4	40	60	100
5	VAC	DCE405	ENVIRONMENTAL SCIENCE	2	0	2	00	50	50
TOTAL				18	4	22	260	290	550

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

DIPLOMA (CIVIL ENGINEERING) SEM-V									
SR NO .	COURSE TYPE	COURSECODE	CORSENAME	LECTUR E (HRS.)/WEEK	PRACTIC AL (HRS.)/WEEK	CREDIT S	EXAMINATION		TOTAL MARK S
							INTERN AL	EXTERN AL	
1	MAJOR	DCE501	DESIGN OF CONCRETE STRUCTURES	4	2	6	90	60	150
2	MAJOR	DCE502	DESIGN OF STEEL STRUCTURES	4	0	4	40	60	100
3	MAJOR	DCE503	CONSTRUCTION PROJECT MANAGEMENT	4	2	6	90	60	150
4	MINOR	DCE504	TRANSPORTATION ENGINEERING	4	0	4	40	60	100
5	SEC	DCE506	MIN PROJECT	0	2	2	50	00	50
TOTAL				16	6	22	310	240	550

DIPLOMA (CIVIL ENGINEERING) SEM-VI									
SR NO .	COURSE TYPE	COURSECODE	CORSENAME	LECTUR E (HRS.)/WEEK	PRACTI CAL (HRS.)/WEEK	CREDIT S	EXAMINATION		TOTAL MARK S
							INTERN AL	EXTERN AL	
1	MAJOR	DCE601	IRREGATION ENGINEERING	4	2	6	90	60	150
2	MAJOR	DCE602	TOWN PLANNING & SMART CITIES	4	2	6	90	60	150
3	MAJOR	DCE603	CONSTRUCTION TECHNOLOGY & EQUIPMENT	4	2	6	90	60	150
4	MINOR	DCE604	DIPLOMA PROJECT	0	6	6	150	00	150
TOTAL				12	12	24	420	180	600

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-I

COURSE CODE: DCE101

COURSE NAME: ENGINEERING MATHEMATICS-I

Course Objectives:

- To develop foundational mathematical skills essential for mechanical engineering applications
- To apply algebraic, trigonometric, and calculus concepts to solve engineering problems
- To interpret and analyze data using statistical methods
- To build problem-solving abilities through applied mathematics
- To prepare students for advanced engineering mathematics in subsequent semesters

Course Outcomes: At the end of the course students shall be able to

CO1	Solve algebraic equations and apply them to engineering problems
CO2	Apply trigonometric functions to analyze mechanical systems
C03	Perform basic differentiation and integration relevant to engineering applications
C04	Analyze data using measures of central tendency and dispersion

Unit	Content	Credit	Weightage
I	Algebra and Trigonometry Topics: <ul style="list-style-type: none">• Algebra: Quadratic equations, simultaneous linear equations (2 and 3 variables)• Arithmetic and geometric progressions• Trigonometry: Trigonometric ratios, identities, compound angles• Heights and distances (engineering applications)• Complex numbers: basics and operations• Applications: Simple harmonic motion, projectile motion, force resolution	1	25%
II	Differential Calculus Topics: <ul style="list-style-type: none">• Functions, limits, and continuity• Derivatives: Standard formulas• Rules of differentiation: Product, quotient, chain rule• Applications of derivatives:<ul style="list-style-type: none">◦ Rate of change (velocity, acceleration)◦ Maxima and minima (optimization problems)◦ Tangents and normals• Partial differentiation (introduction)• Applications: Optimization in design, motion analysis, slope of curves	1	25%
III	Integral Calculus Topics: <ul style="list-style-type: none">• Indefinite integrals: Standard formulas	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none"> • Methods of integration: Substitution, integration by parts • Definite integrals and properties • Applications of integration: <ul style="list-style-type: none"> ◦ Area under curves ◦ Volume of solids of revolution ◦ Center of gravity/centroid (basic concepts) • Applications: Area calculation in engineering drawings, volume of tanks/containers 		
IV	<p>Statistics and Probability</p> <p>Topics:</p> <ul style="list-style-type: none"> • Statistics: Data classification, frequency distribution • Measures of central tendency: Mean, median, mode • Measures of dispersion: Range, standard deviation, variance • Graphical representation: Histogram, frequency polygon, ogive • Probability: Basic concepts, addition and multiplication theorems • Applications: Quality control, measurement analysis, manufacturing data interpretation 	1	25%

Textbooks:

- Primary: *Engineering Mathematics* — NP Bali & Dr. Manish Goyal
- Primary: *A Textbook of Engineering Mathematics* — B.S. Grewal

Reference books:

- *Advanced Engineering Mathematics* — H.K. Das
- *Engineering Mathematics* — D. G. Gupta
- *Basic Technical Mathematics with Calculus* — Allyn J. Washington
- *Mathematics for Mechanical Engineering* — B.V. Ramana

Online Platforms:

1. NPTEL Videos: "Basic Course in Mathematics" for engineering
2. Coursera: "Pre-Calculus" by University of California, Irvine

COURSE CODE: DCE102

COURSE NAME: ENGINEERING PHYSICS

Course Objectives:

- To understand fundamental physics principles relevant to mechanical engineering
- To apply physics concepts to solve practical engineering problems
- To develop skills in measurement, experimentation, and data analysis
- To correlate theoretical physics with mechanical systems and applications
- To build foundation for advanced engineering courses

Course Outcomes: At the end of the course students shall be able to

CO1	Apply mechanics principles to analyze forces, motion, and energy in mechanical systems
CO2	Explain thermal physics concepts relevant to heat engines and refrigeration
C03	Demonstrate understanding of optics and acoustics in

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	engineering contexts
C04	Perform measurements using physical instruments and analyze experimental data

Unit	Content	Credit	Weightage
I	<p>Mechanics & Properties of Matter</p> <p>Topics:</p> <ul style="list-style-type: none"> Scalars and vectors, force resolution, moment of force Laws of motion, friction, work, energy, power Circular motion, centripetal force Elasticity: Stress, strain, Hooke's law, Young's modulus Surface tension and viscosity (basic concepts) Applications: Machine design, material strength, fluid mechanics basics 	1	25%
II	<p>Thermal Physics & Thermodynamics</p> <p>Topics:</p> <ul style="list-style-type: none"> Heat and temperature, thermal expansion Calorimetry, specific heat capacity Laws of thermodynamics (zeroth, first, second) Heat transfer: conduction, convection, radiation Kinetic theory of gases (basic) Applications: Heat engines, refrigeration, insulation materials 	1	25%
III	<p>Waves, Optics & Acoustics</p> <p>Topics:</p> <ul style="list-style-type: none"> Simple harmonic motion, wave motion Sound: characteristics, intensity, Doppler effect Ultrasonics and applications Reflection, refraction, lenses, optical instruments Fiber optics (basic principles) Applications: Machine vibration, NDT, optical measurements, noise control 	1	25%
IV	<p>Modern Physics & Material Science</p> <p>Topics:</p> <ul style="list-style-type: none"> Quantum physics basics: photons, matter waves Lasers: principles, types, applications Semiconductors: basics Superconductivity (elementary concepts) Nanotechnology introduction Applications: Laser machining, sensors, advanced materials 	1	25%

Textbooks:

- Primary: *Engineering Physics* — D. R. Khanna & H. N. Srivastava
- Primary: *Engineering Physics* — R. K. Gaur & S. L. Gupta

Reference books:

- Fundamentals of Physics* — Halliday, Resnick & Walker
- Concepts of Physics* — H. C. Verma

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- *Engineering Physics* — M. N. Avadhanulu & P. G. Kshirsagar
- *Practical Physics* — C. L. Arora

Online Platforms:

- SWAYAM/NPTEL: "Engineering Physics" courses by IITs/NITs

PRACTICAL LIST:

Section A: Mechanics

1. Vernier Calipers & Screw Gauge: Measurement of dimensions of given objects
2. Simple Pendulum: Determination of 'g' and study of laws of pendulum
3. Young's Modulus: By Searle's method or cantilever
4. Coefficient of Friction: Using inclined plane
5. Force Table: Verification of law of parallelogram of forces

Section B: Thermal Physics

6. Specific Heat Capacity: Of solid/liquid using calorimeter
7. Thermal Conductivity: Of good conductor (Searle's apparatus)
8. Mechanical Equivalent of Heat: Using Joule's calorimeter
9. Coefficient of Linear Expansion: Using optical lever

Section C: Waves & Optics

10. Sonometer: Verification of laws of vibrating strings
11. Melde's Experiment: Transverse and longitudinal modes
12. Compound Pendulum: Determination of 'g' and radius of gyration
13. Optical Bench: Focal length of convex lens
14. Prism: Refractive index using spectrometer

Section D: Modern Physics

15. LASER: Determination of wavelength using diffraction grating
16. Photoelectric Effect: Verification of Einstein's equation
17. PN Junction Diode: Characteristics
18. Thermistor: Temperature-resistance characteristics

COURSE CODE: DCE103

COURSE NAME: ENGINEERING CHEMISTRY

Course Objectives:

- To provide fundamental knowledge of chemistry relevant to mechanical engineering applications
- To understand material properties, corrosion, fuels, and lubricants from chemical perspective
- To develop skills in chemical analysis, quality control, and material testing
- To correlate chemical principles with mechanical systems and manufacturing processes
- To build foundation for materials science, metallurgy, and environmental engineering

Course Outcomes: At the end of the course students shall be able to

CO1	Explain water treatment processes for industrial applications
CO2	Analyze properties of fuels and lubricants used in mechanical systems
C03	Identify corrosion mechanisms and prevention methods
C04	Apply principles of electrochemistry to batteries and corrosion control

Unit	Content	Credit	Weightage
------	---------	--------	-----------

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

I	Water Chemistry & Treatment Topics: <ul style="list-style-type: none">• Water impurities: hardness, alkalinity, pH• Water softening methods: lime-soda, ion exchange• Boiler feed water treatment: scale and sludge formation, prevention• Cooling water treatment• Drinking water standards• Applications: Boiler operations, cooling systems, industrial water supply	1	25%
II	Fuels & Combustion Topics: <ul style="list-style-type: none">• Classification of fuels: solid, liquid, gaseous• Calorific value determination: bomb calorimeter• Solid fuels: coal analysis (proximate & ultimate)• Liquid fuels: petroleum refining, petrol, diesel, octane/cetane number• Gaseous fuels: LPG, CNG, biogas• Combustion calculations• Applications: IC engines, furnaces, power generation	1	25%
III	Lubricants & Corrosion Topics: <ul style="list-style-type: none">• Lubrication: mechanisms, types of lubricants• Properties: viscosity index, flash point, pour point• Additives in lubricants• Corrosion: types, mechanisms (electrochemical)• Factors affecting corrosion• Corrosion prevention methods• Applications: Machine maintenance, automotive, industrial equipment	1	25%
IV	Engineering Materials & Polymers Topics: <ul style="list-style-type: none">• Cement: composition, setting and hardening• Refractories: properties, classification• Polymers: addition, condensation, engineering plastics• Composite materials: introduction• Batteries: primary, secondary, fuel cells• Applications: Construction materials, polymers in engineering, energy storage	1	25%

Textbooks:

- Primary: *Engineering Chemistry* — Jain & Jain
- Primary: *Engineering Chemistry* — Dr. O. P. Verma

Reference books:

- *A Textbook of Engineering Chemistry* — S. S. Dara & S. S. Umare
- *Engineering Chemistry* — R. P. Mani & K. N. Mishra
- *Chemistry for Engineering Students* — B. S. Jai Prakash & R. Venugopal
- *Applied Chemistry* — H. D. Gesser

Online Platforms:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- SWAYAM/NPTEL: "Engineering Chemistry" courses by IITs
- Khan Academy: Chemistry fundamentals
- MERLOT: Chemistry learning materials

PRACTICAL LIST:

Section A: Water Analysis

1. Determination of Hardness: By EDTA titration method
2. Alkalinity Determination: Using acid-base titration
3. pH Measurement: Using pH meter/universal indicator
4. Chloride Content: By argentometric method

Section B: Fuels & Lubricants

5. Viscosity Measurement: Using Ostwald viscometer/Redwood viscometer
6. Flash Point Determination: Using Abel/Pensky Martens apparatus
7. Calorific Value: Bomb calorimeter demonstration
8. Saponification Value: Of oil sample

Section C: Corrosion & Electrochemistry

9. Corrosion Rate Measurement: Weight loss method
10. Galvanic Series Determination
11. Electroplating: Copper plating on iron
12. EMF Measurement: Of simple galvanic cell

Section D: Materials & Polymers

13. Cement Setting Time: Initial and final setting time
14. Polymer Identification Tests
15. Preparation of Polymer: Phenol-formaldehyde/Bakelite
16. Refractory Properties: Porosity, thermal shock resistance

COURSE CODE: DCE104

COURSE NAME: ENGINEERING GRAPHICS AND CAD

Course Objectives:

- To develop skills in engineering drawing and visualization
- To understand and apply standards in technical drawing (BIS/ISO)
- To master basic CAD software for 2D drawing creation
- To prepare production-ready engineering drawings
- To bridge manual drafting skills with digital CAD competence

Course Outcomes: At the end of the course students shall be able to

CO1	Create engineering drawings using manual drafting instruments
CO2	Apply BIS/ISO standards in dimensioning and tolerancing
C03	Develop orthographic projections from pictorial views
C04	Generate 2D drawings using CAD software

Unit	Content	Credit	Weightage
I	Fundamentals & Manual Drafting Topics: <ul style="list-style-type: none">• Drawing instruments and their uses	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">• BIS/ISO conventions and standards• Lettering, line types, dimensioning rules• Geometric constructions• Scales: plain, diagonal, vernier• Practical: Manual drafting exercises, sheet layout		
II	Projections & Views Topics: <ul style="list-style-type: none">• Orthographic projections (First angle vs Third angle)• Projection of points, lines, and planes• Projection of solids: prism, pyramid, cylinder, cone• Sectional views: full, half, offset sections• Auxiliary views• Practical: Drawing orthographic views from isometric	1	25%
III	CAD Fundamentals Topics: <ul style="list-style-type: none">• Introduction to CAD: advantages, applications• AutoCAD interface: workspace, toolbars, commands• Basic drawing commands: Line, Circle, Arc, Polygon• Modify commands: Copy, Move, Rotate, Mirror, Array• Layers, colors, linetypes• Dimensioning and annotation in CAD	1	25%
IV	Applications & Advanced CAD Topics: <ul style="list-style-type: none">• Blocks and attributes• Hatching and pattern filling• Plotting and printing to scale• Introduction to 3D modeling basics• Industrial drawing examples: machine parts• Practical: Complete drawing projects	1	25%

Textbooks:

- Primary: *Engineering Drawing* — N. D. Bhatt
- Primary: *Engineering Drawing with AutoCAD* — Goutam Pohit & Goutam Ghosh

Reference books:

- *Engineering Drawing* — Basant Agrawal & C. M. Agrawal
- *A Textbook of Engineering Drawing* — R. K. Dhawan
- *AutoCAD for Engineers and Designers* — Sham Tickoo
- *Machine Drawing* — K. L. Narayana & P. Kannaiah

Online Platforms:

- SWAYAM/NPTEL: "Engineering Drawing" courses by IITs
- Coursera: "Autodesk CAD/CAM/CAE" specialization

PRACTICAL LIST:

Section A: Manual Drafting (Drawing Sheets)

1. Sheet 1: Lines, lettering, dimensioning practice
2. Sheet 2: Geometric constructions
3. Sheet 3: Orthographic projections of simple solids

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

4. Sheet 4: Sectional views of machine parts
5. Sheet 5: Development of surfaces

Section B: CAD Exercises - Basic

6. CAD-1: AutoCAD interface familiarization
7. CAD-2: Basic shapes using drawing commands
8. CAD-3: Modification exercises
9. CAD-4: Layer management exercise
10. CAD-5: Dimensioning practice

Section C: CAD Exercises - Intermediate

11. CAD-6: Orthographic projections in CAD
12. CAD-7: Sectional views in CAD
13. CAD-8: Creating blocks and attributes
14. CAD-9: Plotting and printing
15. CAD-10: Title block creation

Section D: Project Work

16. Project 1: Machine component drawing (manual)
17. Project 2: Same component drawing in CAD
18. Project 3: Assembly drawing with parts list
19. Project 4: Complete drawing set: part + assembly
20. Portfolio: Compilation of best work

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-II

COURSE CODE: DCE201

COURSE NAME: ENGINEERING MATHEMATICS-II

Course Objectives:

- To build advanced mathematical skills for engineering problem-solving
- To apply differential equations to model mechanical systems
- To understand vector algebra and its applications in mechanics
- To develop skills in numerical methods for engineering computations
- To prepare mathematical foundation for subjects like Mechanics, Thermodynamics, and Machine Design

Course Outcomes: At the end of the course students shall be able to

CO1	Solve ordinary differential equations relevant to engineering systems
CO2	Apply vector algebra to analyze forces and motions in 3D space
C03	Perform numerical computations using interpolation, differentiation, and integration methods
C04	Analyze data using probability distributions and statistical methods

Unit	Content	Credit	Weightage
I	Differential Equations Topics: <ul style="list-style-type: none">• First order differential equations: variable separable, homogeneous, exact• Linear differential equations of first order• Applications: Newton's law of cooling, growth and decay, simple circuits• Second order linear differential equations with constant coefficients• Complementary function and particular integral methods• Applications: Spring-mass systems, electrical circuits, vibration analysis	1	25%
II	Vector Algebra & 3D Geometry Topics: <ul style="list-style-type: none">• Vectors: dot product, cross product, scalar triple product• Vector differentiation• Gradient, divergence, curl (basic concepts)• Lines and planes in 3D space• Direction cosines and ratios• Applications: Force analysis, moment of force, work done by force	1	25%
III	Numerical Methods Topics: <ul style="list-style-type: none">• Solution of algebraic equations: Bisection method,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>Newton-Raphson method</p> <ul style="list-style-type: none">• Interpolation: Newton's forward and backward difference formulas• Numerical differentiation and integration• Trapezoidal rule and Simpson's rules• Applications: Root finding in design equations, area calculations, data analysis		
IV	<p>Probability & Laplace Transforms</p> <p>Topics:</p> <ul style="list-style-type: none">• Probability: Basic concepts, addition and multiplication theorems• Random variables, probability distributions (Binomial, Poisson, Normal)• Mean, variance, standard deviation• Laplace Transforms: Definition, basic transforms• Properties: linearity, shifting, differentiation• Application to differential equations• Applications: Quality control, reliability analysis, system dynamics	1	25%

Textbooks:

- Primary: *Higher Engineering Mathematics* — B.S. Grewal
- Primary: *Engineering Mathematics* — NP Bali & Dr. Manish Goyal

Reference books:

- *Advanced Engineering Mathematics* — H.K. Das
- *Numerical Methods* — S.S. Sastry
- *Probability and Statistics for Engineers* — Dr. J. Ravichandran
- *Mathematical Methods* — B.V. Ramana

Online Platforms:

- NPTEL Videos: "Differential Equations for Engineers"
- Khan Academy: Complete probability and statistics
- MIT OCW: "Single Variable Calculus" continuation
- Coursera: "Introduction to Numerical Methods"

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

COURSE CODE: DCE202

COURSE NAME: APPLIED MECHANICS

Course Objectives:

- To understand fundamental principles of mechanics and their applications in engineering
- To analyze forces, moments, and equilibrium in mechanical systems
- To study kinematics and dynamics of particles and rigid bodies
- To apply concepts of friction, work, energy, and power to mechanical systems
- To develop problem-solving skills for engineering mechanics applications

Course Outcomes: At the end of the course students shall be able to

CO1	Apply principles of statics to analyze equilibrium of forces
CO2	Calculate centroids, center of gravity, and moments of inertia
C03	Solve problems in kinematics: displacement, velocity, acceleration
C04	Analyze dynamic systems using Newton's laws and energy methods

Unit	Content	Credit	Weightage
I	Statics - Forces & Equilibrium Topics: <ul style="list-style-type: none">• Introduction to mechanics: statics and dynamics• System of forces: coplanar concurrent, parallel, non-concurrent• Resolution and composition of forces• Moment of a force, couple, Varignon's theorem• Equilibrium of forces: conditions, free body diagrams• Applications: Truss analysis, machine component design	1	25%
II	Centroid, Friction & Virtual Work Topics: <ul style="list-style-type: none">• Centroid and center of gravity: simple and composite areas• Moment of inertia: area moment, parallel axis theorem• Friction: laws of friction, angle of repose, wedge friction• Belt friction: flat and V-belts• Virtual work principle• Applications: Structural design, machine stability, belt drives	1	25%
III	Kinematics Topics: <ul style="list-style-type: none">• Rectilinear motion: displacement, velocity, acceleration• Curvilinear motion: projectile motion• Relative motion• Rotation: angular displacement, velocity, acceleration	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">• Simple harmonic motion• Applications: Mechanism analysis, vehicle dynamics, vibration basics		
IV	<p>Dynamics</p> <p>Topics:</p> <ul style="list-style-type: none">• Newton's laws of motion: application to engineering problems• Work, energy, power: definitions and applications• Impulse and momentum: conservation principles• Collision of elastic bodies: direct and oblique impact• Introduction to vibration: free vibrations• Applications: Impact loading, energy calculations, machine dynamics	1	25%

Textbooks:

- Primary: *Engineering Mechanics* — S. S. Bhavikatti & K. G. Rajashekharappa
- Primary: *Applied Mechanics* — R. S. Khurmi

Reference books:

- *Engineering Mechanics: Statics & Dynamics* — I. H. Shames
- *Vector Mechanics for Engineers* — Beer & Johnston
- *Engineering Mechanics* — D. S. Kumar
- *Problems in Engineering Mechanics* — S. P. Timoshenko & D. H. Young

Online Platforms:

- SWAYAM/NPTEL: "Engineering Mechanics" courses by IITs

PRACTICAL LIST:

Section A: Statics Experiments

1. Law of Parallelogram of Forces: Verification using force table
2. Law of Polygon of Forces: Experimental verification
3. Jib Crane Analysis: Forces in members using graphical method
4. Simple Truss Analysis: Using method of joints

Section B: Friction & Center of Gravity

5. Coefficient of Friction: Using inclined plane
6. Angle of Repose: Determination for different materials
7. Center of Gravity: Of irregular lamina using plumb line method
8. Moment of Inertia: Compound pendulum method

Section C: Kinematics Experiments

9. Projectile Motion: Study using projectile apparatus
10. Simple Pendulum: Determination of 'g' and laws verification
11. Flywheel: Moment of inertia determination
12. Atwood's Machine: Verification of laws of motion

Section D: Dynamics & Impact

13. Conservation of Energy: Using inclined track and trolley
14. Coefficient of Restitution: Using ball drop test
15. Impact of Bodies: Direct central impact demonstration
16. Spring Constant: Determination using Hooke's law

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

COURSE CODE: DCE203

COURSE NAME: BUILDING MATERIALS AND CONSTRUCTION

Course Objectives:

- To understand the properties, testing methods, and applications of various building materials.
- To study the fundamentals of building construction techniques and practices.
- To learn about masonry, foundations, floors, roofs, stairs, doors, windows, and finishing works.
- To develop skills in selecting appropriate materials and construction methods for different building types.
- To prepare students for practical field applications in construction projects.

Course Outcomes: At the end of the course students shall be able to

CO1	Identify and classify different building materials based on their properties and applications.
CO2	Explain the construction procedures for various building components.
C03	Select appropriate materials and construction methods for given building requirements.
C04	Perform basic tests on building materials and interpret the results.

Unit	Content	Credit	Weightage
I	Introduction to Building Materials <ul style="list-style-type: none">• Introduction to Building Materials:<ul style="list-style-type: none">◦ Classification of building materials: natural, artificial, modern◦ Requirements of good building materials◦ Sustainability in material selection• Stones:<ul style="list-style-type: none">◦ Classification of rocks◦ Properties of good building stone◦ Quarrying, dressing, and uses of stones• Bricks:<ul style="list-style-type: none">◦ Composition of brick earth◦ Manufacturing process: preparation, molding, drying, burning◦ Classification, properties, and tests on bricks• Tiles:<ul style="list-style-type: none">◦ Types of tiles: roofing, flooring, wall tiles◦ Manufacturing and uses <p>Applications: Selection of materials for foundations, walls, and flooring.</p>	1	25%
II	Cement, Concrete and Mortar <ul style="list-style-type: none">• Cement:<ul style="list-style-type: none">◦ Types of cement: OPC, PPC, rapid hardening, low heat, etc.◦ Composition, manufacturing process◦ Properties and tests on cement	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">• Aggregates:<ul style="list-style-type: none">○ Classification: fine and coarse aggregates○ Properties: shape, texture, strength, durability○ Grading and sieve analysis• Concrete:<ul style="list-style-type: none">○ Ingredients of concrete and their functions○ Properties of fresh and hardened concrete○ Mix design basics (nominal mix)○ Types of concrete: plain, reinforced, precast, ready-mix• Mortar:<ul style="list-style-type: none">○ Types: lime, cement, gypsum, mud mortar○ Preparation and uses <p>Applications: Concrete mix preparation, mortar for masonry, plastering.</p>		
III	<p>Building Components & Construction</p> <ul style="list-style-type: none">• Foundations:<ul style="list-style-type: none">○ Types: shallow and deep foundations○ Spread footing, combined footing, raft, pile, well foundation• Masonry:<ul style="list-style-type: none">○ Stone masonry: rubble and ashlar masonry○ Brick masonry: bonds (English, Flemish), junctions○ Composite masonry• Floors and Roofs:<ul style="list-style-type: none">○ Types of floors: ground floor, upper floor○ Flooring materials: tiles, marble, granite, terrazzo○ Types of roofs: flat, pitched, trussed• Doors, Windows and Ventilators:<ul style="list-style-type: none">○ Types of doors: paneled, glazed, flush, sliding○ Types of windows: casement, sliding, pivoted○ Materials: timber, aluminum, UPVC <p>Applications: Construction of foundations, walls, floors, and roofs.</p>	1	25%
IV	<p>Finishing Works & Special Construction</p> <ul style="list-style-type: none">• Finishing Works:<ul style="list-style-type: none">○ Plastering: types, materials, procedure○ Pointing: types and methods○ Painting: types of paints, preparation of surfaces, application○ Damp-proofing: causes, materials, methods• Formwork and Scaffolding:<ul style="list-style-type: none">○ Types of formwork, materials, requirements○ Types of scaffolding: single, double,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>cantilever</p> <ul style="list-style-type: none">• Modern Construction Methods:<ul style="list-style-type: none">○ Prefabricated construction○ Composite construction○ Green building materials and techniques• Building Services Basics:<ul style="list-style-type: none">○ Plumbing and sanitary fittings○ Electrical conduits and fittings in buildings <p>Applications: Surface finishing, waterproofing, modern construction techniques.</p>		
--	---	--	--

Textbooks:

- Primary: *Building Construction* — B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain
- Primary: *Building Materials* — S.K. Duggal

Reference books:

- *Building Materials and Construction* — Rangwala
- *Construction Technology* — Roy Chudley
- *Civil Engineering Materials* — N. Subramanian
- *Handbook of Building Construction* — V.N. Vazirani & S.P. Chandola

Online Platforms:

- NPTEL/SWAYAM: *Building Materials and Construction* by IITs/NITs
- Coursera: *Construction Management* by Columbia University
- edX: *Building Materials and Human Health* by Harvard

PRACTICAL LIST:

Section A: Material Testing	Section C: Construction Practice
<ul style="list-style-type: none">4. Tests on Bricks:<ul style="list-style-type: none">○ Water absorption test○ Compressive strength test○ Efflorescence test5. Tests on Cement:<ul style="list-style-type: none">○ Consistency test○ Initial and final setting time○ Fineness test6. Tests on Aggregates:<ul style="list-style-type: none">○ Sieve analysis○ Specific gravity and water absorption○ Aggregate crushing value test	<ul style="list-style-type: none">7. Brick Masonry:<ul style="list-style-type: none">○ Construction of English bond (1 brick thick)○ Construction of Flemish bond (1½ brick thick)8. Plastering and Pointing:<ul style="list-style-type: none">○ Application of cement plaster on brick wall○ Practice of different types of pointing9. Formwork and Scaffolding:<ul style="list-style-type: none">○ Demonstration of wooden formwork for column○ Erection of simple scaffolding
Section B: Concrete and Mortar	Section D: Field Visits & Reporting
<ul style="list-style-type: none">4. Concrete Mix Preparation:<ul style="list-style-type: none">○ Nominal mix proportioning○ Workability test: slump test○ Compaction factor test	<ul style="list-style-type: none">10. Site Visit Report:<ul style="list-style-type: none">○ Visit to ongoing construction site○ Observation of materials,

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT,1956

<p>5. Mortar Preparation:</p> <ul style="list-style-type: none"> ○ Preparation of cement mortar (1:3, 1:6) ○ Preparation of lime mortar <p>6. Compressive Strength Test:</p> <ul style="list-style-type: none"> ○ Casting and testing of concrete cubes ○ Casting and testing of mortar cubes 	<p>methods, and machinery</p> <p>11. Market Survey Report:</p> <ul style="list-style-type: none"> ○ Survey of building materials available in local market ○ Comparison of prices and quality <p>12. Model Making:</p> <ul style="list-style-type: none"> ○ Model of different types of foundations ○ Model of roof truss ○ Model of brick bonds
---	---

COURSE CODE: DCE204

COURSE NAME: SURVEYING AND LEVELLING

Course Objectives:

- To understand the fundamental principles and classifications of surveying.
- To learn the use of basic surveying instruments and their applications.
- To study various methods of linear, angular, and level measurements.
- To develop skills in conducting chain, compass, and levelling surveys.
- To prepare students for fieldwork in surveying and mapping.

Course Outcomes: At the end of the course students shall be able to

CO1	Use basic surveying instruments such as chain, compass, dumpy level, and theodolite.
CO2	Perform linear and angular measurements in field surveys.
C03	Conduct levelling operations and prepare contour maps.
C04	Calculate areas and volumes from survey data for engineering projects.

Unit	Content	Credit	Weightage
I	<p>Fundamentals of Surveying and Chain Surveying</p> <ul style="list-style-type: none"> • Introduction to Surveying: <ul style="list-style-type: none"> ○ Definition, objectives, and classifications ○ Principles of surveying ○ Units of measurements • Linear Measurements: <ul style="list-style-type: none"> ○ Direct methods using chains and tapes ○ Types of chains: metric chain, Gunter's chain, engineer's chain ○ Ranging: direct and indirect ranging ○ Errors in chaining and corrections • Chain Surveying: <ul style="list-style-type: none"> ○ Instruments: chain, tape, arrows, ranging rods, offset rod, cross-staff ○ Survey stations, base lines, check lines, tie lines 	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Field work: reconnaissance, station selection, chaining, offsetting○ Booking and plotting of chain survey• Obstacles in Chaining:<ul style="list-style-type: none">○ Obstacles to ranging and chaining○ Methods to overcome obstacles <p>Applications: Land measurement, boundary marking, small area mapping.</p>		
II	<p>Compass and Theodolite Surveying</p> <ul style="list-style-type: none">○ Compass Surveying:<ul style="list-style-type: none">▪ Types of compass: prismatic and surveyor's compass▪ Bearings: whole circle bearing, reduced bearing, fore bearing, back bearing▪ Magnetic declination and local attraction▪ Traversing: open and closed traverse▪ Plotting of traverse and balancing of traverse (Bowditch's rule)○ Theodolite Surveying:<ul style="list-style-type: none">▪ Types of theodolite: vernier, micrometer, digital▪ Components and adjustments of theodolite▪ Measurement of horizontal and vertical angles• Traverse Computations:<ul style="list-style-type: none">○ Latitude and departure○ Closing error and its adjustment○ Area computation by coordinate method <p>Applications: Route surveying, traverse for construction layout, angular measurements.</p>	1	25%
III	<p>Levelling and Contouring</p> <ul style="list-style-type: none">• Levelling:<ul style="list-style-type: none">○ Basic definitions: datum, benchmark, level surface, reduced level○ Types of levelling: simple, differential, profile, cross-sectional○ Instruments: dumpy level, tilting level, auto level, levelling staff○ Temporary adjustments of level○ Booking and reduction of levels: height of instrument method, rise and fall method• Contouring:<ul style="list-style-type: none">○ Characteristics and uses of contours	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Methods of contouring: direct and indirect○ Interpolation of contours○ Drawing contour maps and interpretation <ul style="list-style-type: none">• Applications of Levelling:○ Longitudinal and cross-sectioning for roads and canals○ Setting out gradients○ Earthwork calculations <p>Applications: Road alignment, irrigation canals, site grading, contour mapping.</p>		
IV	<p>Modern Surveying and Calculations</p> <ul style="list-style-type: none">• Plane Table Surveying:○ Instruments and accessories○ Methods: radiation, intersection, traversing, resection○ Advantages and limitations <ul style="list-style-type: none">• Area and Volume Calculations:○ Area computation: mid-ordinate rule, average ordinate rule, trapezoidal rule, Simpson's rule○ Volume computation: trapezoidal and prismoidal formulas○ Calculation of earthwork for road and canal projects <ul style="list-style-type: none">• Modern Surveying Instruments:○ Introduction to Total Station: components and working○ Global Positioning System (GPS) basics○ Introduction to remote sensing and GIS in surveying <ul style="list-style-type: none">• Setting Out Works:○ Setting out buildings, roads, and culverts○ Use of pegs, profiles, and batter boards <p>Applications: Construction layout, land development, modern mapping techniques.</p>	1	25%

Textbooks:

- Primary: *Surveying Vol. 1* — Dr. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain
- Primary: *Textbook of Surveying* — S.K. Duggal

Reference books:

- *Surveying and Levelling* — R. Subramanian
- *Plane Surveying* — A.M. Chandra
- *Surveying Theory and Practice* — James M. Anderson & Edward M. Mikhail
- *Fundamentals of Surveying* — S.K. Roy

Online Platforms:

PRACTICAL LIST:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

Section A: Chain Surveying <ol style="list-style-type: none">Chain Survey of a Small Area:<ul style="list-style-type: none">Ranging and chaining of linesTaking offsets with cross-staff and optical squarePlotting of chain survey on drawing sheetOvercoming Obstacles in Chaining:<ul style="list-style-type: none">Chaining across a pond (by similar triangles)Chaining across a building (by right-angle offsets)	Section C: Levelling and Contouring Differential Levelling: <ul style="list-style-type: none">Temporary adjustments of dumpy levelDetermining difference in elevation between two pointsBooking by height of instrument and rise & fall methods Profile and Cross-Section Levelling: <ul style="list-style-type: none">Longitudinal levelling along a road alignmentCross-section levelling at regular intervalsPlotting longitudinal section and cross-sections
Section B: Compass and Theodolite Surveying <ol style="list-style-type: none">Compass Traverse:<ul style="list-style-type: none">Measurement of bearings with prismatic compassConducting closed compass traversePlotting and balancing of traverseTheodolite Traverse:<ul style="list-style-type: none">Measurement of horizontal angles by repetition methodMeasurement of vertical anglesConducting closed theodolite traverse	Section D: Modern Surveying and Computations Plane Table Survey: <ul style="list-style-type: none">Radiation method for small areaIntersection method for inaccessible pointsTraversing with plane table Area and Volume Computation: <ul style="list-style-type: none">Area calculation using planimeterCalculation of area from plotted map using trapezoidal ruleEarthwork volume calculation for road formation

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-III

COURSE CODE: DCE301

COURSE NAME: STRENGTH OF MATERIALS

Course Objectives:

- To understand stress, strain, and mechanical behavior of materials
- To analyze stresses and deformations in beams, shafts, and columns
- To study theories of failure and their applications
- To learn experimental methods for material strength testing
- To apply strength principles to design simple machine components

Course Outcomes: At the end of the course students shall be able to

CO1	Calculate stresses and strains in loaded members
CO2	Analyze bending and shear stresses in beams
C03	Determine torsional stresses in circular shafts
C04	Evaluate buckling loads in columns

Unit	Content	Credit	Weightage
I	Simple Stresses & Strains Topics: <ul style="list-style-type: none">• Concept of stress and strain: normal, shear• Hooke's law, elasticity, Poisson's ratio• Stress-strain diagram for ductile and brittle materials• Factor of safety, working stress• Thermal stresses, compound bars• Applications: Axially loaded members, temperature effects	1	25%
II	Shear Force & Bending Moment Topics: <ul style="list-style-type: none">• Types of beams and supports• Shear force and bending moment diagrams for:<ul style="list-style-type: none">◦ Cantilever beams◦ Simply supported beams◦ Overhanging beams• Point of contraflexure• Relationship between load, shear force and bending moment• Applications: Beam design, structural analysis	1	25%
III	Stresses in Beams & Torsion Topics: <ul style="list-style-type: none">• Theory of simple bending: assumptions, derivation• Bending stress distribution, section modulus• Shear stress distribution in beams• Torsion of circular shafts: solid and hollow• Power transmitted by shafts• Applications: Shaft design, machine elements	1	25%
IV	Columns & Combined Stresses	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>Topics:</p> <ul style="list-style-type: none">• Columns: short and long columns• Euler's theory, Rankine's formula• Combined bending and direct stresses• Principal stresses and strains• Theories of failure: maximum principal stress, maximum shear stress• Applications: Machine frames, structural columns		
--	---	--	--

Textbooks:

- Primary: *Strength of Materials* — R. S. Khurmi
- Primary: *Strength of Materials* — B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain

Reference books:

- *Mechanics of Materials* — R. C. Hibbeler
- *Strength of Materials* — S. Ramamrutham
- *Strength of Materials* — D. S. Prakash Rao
- *A Textbook of Strength of Materials* — R. K. Bansal

Online Platforms:

- SWAYAM/NPTEL: "Strength of Materials" courses by IITs
- edX: "Mechanics of Materials" by Georgia Tech

PRACTICAL LIST:

- Section A: Tension & Compression Tests
- 1. Tensile Test: On mild steel using UTM
 - Determination of yield point, ultimate strength, percentage elongation
- 2. Compression Test: On concrete cubes
- 3. Proof Stress Determination: For materials without yield point
- 4. Stress-Strain Curve Plotting: From test data
- Section B: Hardness & Impact Tests
- 5. Hardness Tests: Brinell, Rockwell, Vickers
- 6. Impact Test: Izod and Charpy tests
 - Comparison of impact strength for different materials
- 7. Spring Testing: Determination of stiffness
- Section C: Beam Testing
- 8. Deflection Test: On simply supported beam
 - Verification of beam deflection formula
- 9. Shear Force Diagram: Experimental verification
- 10. Bending Moment Diagram: Experimental verification
- 11. Beam Deflection: Using dial gauges
- Section D: Torsion & Column Tests
- 12. Torsion Test: On circular shafts
 - Determination of modulus of rigidity
- 13. Column Test: Buckling of columns
 - Verification of Euler's formula
- 14. Helical Spring Test: Under axial load
- 15. Universal Testing Machine: Demonstration of various tests

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

COURSE CODE: DCE302

COURSE NAME: FLUID MECHANICS AND HYDRAULIC MACHINES

Course Objectives:

- To understand fundamental properties and behavior of fluids
- To study fluid statics, dynamics, and flow measurement techniques
- To analyze flow through pipes and channels
- To learn working principles of hydraulic machines: pumps and turbines
- To develop skills in fluid mechanics experimentation and data analysis

Course Outcomes: At the end of the course students shall be able to

CO1	Apply fluid properties and principles to engineering problems
CO2	Calculate forces on submerged surfaces and buoyancy effects
C03	Analyze fluid flow using continuity, energy, and momentum equations
C04	Measure flow rate using various flow measurement devices

Unit	Content	Credit	Weightage
I	Fluid Properties & Fluid Statics Topics: <ul style="list-style-type: none">• Properties of fluids: density, viscosity, surface tension• Pressure measurement: manometers, pressure gauges• Hydrostatic forces on submerged surfaces• Buoyancy and flotation• Stability of floating bodies• Applications: Dam design, ship stability, pressure vessels	1	25%
II	Fluid Dynamics & Flow Measurement Topics: <ul style="list-style-type: none">• Types of fluid flow: steady/unsteady, laminar/turbulent• Continuity equation, Bernoulli's equation• Venturimeter, orifice meter, pitot tube• Flow through pipes: major and minor losses• Darcy-Weisbach equation, Moody's chart• Applications: Pipe network design, flow measurement	1	25%
III	Hydraulic Pumps Topics: <ul style="list-style-type: none">• Classification of pumps• Centrifugal pumps: working principle, components• Performance characteristics: head, discharge, efficiency• Cavitation and NPSH• Reciprocating pumps: working principle• Applications: Water supply, irrigation, industrial processes	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

IV	Hydraulic Turbines & Hydraulic Systems Topics: <ul style="list-style-type: none">Classification of turbinesImpulse turbines: Pelton wheelReaction turbines: Francis, KaplanPerformance characteristicsHydraulic systems: accumulators, pressesApplications: Hydroelectric power, industrial power transmission	1	25%
----	---	---	-----

Textbooks:

- Primary: *Fluid Mechanics and Hydraulic Machines* — R. K. Bansal
- Primary: *Hydraulics and Fluid Mechanics* — P. N. Modi & S. M. Seth

Reference books:

- Fluid Mechanics* — Frank M. White
- A Textbook of Fluid Mechanics and Hydraulic Machines* — R. K. Rajput
- Engineering Fluid Mechanics* — K. L. Kumar
- Hydraulic Machines* — Jagdish Lal

Online Platforms:

- SWAYAM/NPTEL: "Fluid Mechanics" courses by IITs
- edX: "Fluid Mechanics" by MIT

PRACTICAL LIST:

- Section A: Fluid Properties & Statics
 - Viscosity Measurement: Using Saybolt/Ford cup viscometer
 - Bernoulli's Theorem: Verification using Bernoulli's apparatus
 - Metacentric Height: Determination for floating bodies
 - Hydrostatic Pressure: On submerged surfaces
- Section B: Flow Measurement
 - Venturimeter: Calibration and coefficient determination
 - Orifice Meter: Coefficient of discharge measurement
 - Pitot Tube: Velocity measurement in pipe
 - Reynolds Experiment: Demonstration of laminar and turbulent flow
- Section C: Pipe Flow & Losses
 - Major Losses: Friction factor determination in pipes
 - Minor Losses: Sudden expansion/contraction, bends
 - Flow Visualization: Using dye injection
 - Notches & Weirs: Discharge measurement
- Section D: Hydraulic Machines
 - Centrifugal Pump: Performance characteristics test
 - Reciprocating Pump: Performance test
 - Pelton Wheel Turbine: Performance characteristics
 - Francis Turbine: Performance test
 - Hydraulic Ram: Demonstration
 - Gear Oil Pump: Performance test

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

COURSE CODE: DCE303

COURSE NAME: CONCRETE TECHNOLOGY

Course Objectives:

- To understand the properties, behavior, and applications of concrete as a construction material.
- To study the composition, manufacturing, and testing of concrete and its constituents.
- To learn concrete mix design methods and quality control techniques.
- To develop skills in concrete production, placement, compaction, curing, and testing.
- To prepare students for practical applications in concrete construction and quality assurance.

Course Outcomes: At the end of the course students shall be able to

CO1	Identify and test the properties of concrete ingredients: cement, aggregates, and water.
CO2	Design nominal concrete mixes for given specifications.
C03	Perform tests on fresh and hardened concrete and interpret results.
C04	Apply proper concreting practices: batching, mixing, transporting, placing, compacting, and curing.

Unit	Content	Credit	Weightage
I	Introduction to Concrete and Its Constituents <ul style="list-style-type: none">• Introduction to Concrete:<ul style="list-style-type: none">◦ Historical background, advantages and disadvantages◦ Types of concrete: plain, reinforced, prestressed, lightweight, etc.• Cement:<ul style="list-style-type: none">◦ Types: OPC, PPC, Rapid hardening, Low heat, etc.◦ Chemical composition and hydration process◦ Tests on cement: fineness, consistency, setting time, soundness, compressive strength• Aggregates:<ul style="list-style-type: none">◦ Classification: fine and coarse aggregates◦ Properties: shape, texture, strength, durability, gradation◦ Sieve analysis and gradation curves• Water:<ul style="list-style-type: none">◦ Quality requirements for mixing and curing◦ Effects of impurities in water <p>Applications: Selection of materials for quality concrete production.</p>	1	25%
II	Properties of Fresh and Hardened Concrete <ul style="list-style-type: none">• Fresh Concrete Properties:<ul style="list-style-type: none">◦ Workability: definition, factors affecting workability	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Measurement of workability: slump test, compaction factor test, flow test, Vee-Bee test○ Segregation and bleeding: causes, effects, prevention• Hardened Concrete Properties:<ul style="list-style-type: none">○ Strength: compressive, tensile, flexural○ Factors affecting strength: w/c ratio, curing, age, compaction○ Durability: permeability, chemical attack, frost action, carbonation○ Creep and shrinkage: types, causes, effects• Concrete Mix Design Basics:<ul style="list-style-type: none">○ Nominal mix and design mix concepts○ Introduction to IS 10262 (mix design guidelines)○ Factors influencing mix design <p>Applications: Quality control in field concrete, mix proportioning.</p>		
III	<p>Concrete Production and Quality Control</p> <ul style="list-style-type: none">• Concrete Production Process:<ul style="list-style-type: none">○ Batching: volume and weight batching○ Mixing: types of mixers, mixing time, efficiency○ Transportation: methods and precautions• Placing, Compaction and Curing:<ul style="list-style-type: none">○ Placing techniques for different structural elements○ Compaction: methods, importance, vibration techniques○ Curing: methods (water curing, membrane curing, steam curing), duration, importance• Quality Control and Testing:<ul style="list-style-type: none">○ Sampling of concrete○ Non-destructive testing: rebound hammer, ultrasonic pulse velocity• Admixtures:<ul style="list-style-type: none">○ Types: plasticizers, superplasticizers, accelerators, retarders, air-entraining agents○ Functions and applications <p>Applications: Site concreting operations, quality assurance, use of admixtures.</p>	1	25%
IV	<p>Special Concretes and Concrete Practices</p> <ul style="list-style-type: none">• Special Concretes:<ul style="list-style-type: none">○ Ready-mix concrete (RMC)○ Self-compacting concrete (SCC)○ High-performance concrete (HPC)○ Fiber-reinforced concrete○ Lightweight and heavyweight concrete	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">• Concrete Construction Practices:<ul style="list-style-type: none">○ Joints in concrete: construction joints, expansion joints, contraction joints○ Formwork: requirements, materials, stripping time○ Repair and rehabilitation of concrete structures• Concrete in Extreme Conditions:<ul style="list-style-type: none">○ Hot weather and cold weather concreting○ Underwater concreting• Sustainability in Concrete:<ul style="list-style-type: none">○ Green concrete concepts○ Use of recycled materials: fly ash, GGBS, recycled aggregates <p>Applications: Specialized construction, sustainable practices, repair works.</p>		
--	--	--	--

Textbooks:

- Primary: *Concrete Technology* — M.S. Shetty
- Primary: *Concrete Technology* — A.M. Neville & J.J. Brooks

Reference books:

- *Properties of Concrete* — A.M. Neville
- *Concrete: Microstructure, Properties, and Materials* — P.K. Mehta & Paulo J.M. Monteiro
- *IS 456:2000 Plain and Reinforced Concrete - Code of Practice*
- *IS 10262:2019 Concrete Mix Proportioning - Guidelines*

Online Platforms:

- NPTEL/SWAYAM: *Concrete Technology* by IIT Madras/Delhi
- Coursera: *Construction Engineering and Management* by Columbia University
- edX: *Concrete and Steel Technology* by Purdue University

PRACTICAL LIST:

Section A: Tests on Concrete Ingredients	Section C: Tests on Hardened Concrete
<ol style="list-style-type: none">1. Tests on Cement:<ul style="list-style-type: none">○ Standard consistency test○ Initial and final setting time○ Fineness test by sieving○ Soundness test (Le Chatelier method)2. Tests on Aggregates:<ul style="list-style-type: none">○ Sieve analysis of fine and coarse aggregates○ Specific gravity and water absorption test○ Aggregate impact value test	<ol style="list-style-type: none">5. Compressive Strength Test:<ul style="list-style-type: none">○ Casting and curing of concrete cubes (150mm)○ Testing at 7 days and 28 days○ Interpretation of results6. Flexural Strength Test:<ul style="list-style-type: none">○ Casting and testing of concrete beams (100×100×500mm)7. Non-Destructive Testing:<ul style="list-style-type: none">○ Rebound hammer test on concrete cubes○ Ultrasonic pulse velocity test demonstration
Section B: Tests on Fresh Concrete	Section D: Special Concretes and Applications
<ol style="list-style-type: none">3. Workability Tests:<ul style="list-style-type: none">○ Slump test	<ol style="list-style-type: none">8. Admixture Demonstration:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT,1956

<ul style="list-style-type: none">○ Compaction factor test○ Flow test○ Vee-Bee consistency test <p>4. Concrete Mix Design Exercise:</p> <ul style="list-style-type: none">○ Nominal mix design as per IS 10262○ Calculation of mix proportions for given grade (M20, M25)	<ul style="list-style-type: none">○ Effect of plasticizer on workability○ Effect of accelerator/retarder on setting time <p>9. Special Concrete Preparation:</p> <ul style="list-style-type: none">○ Preparation of fiber-reinforced concrete○ Demonstration of self-compacting concrete mix <p>10. Field Visit and Report:</p> <ul style="list-style-type: none">○ Visit to RMC plant or concrete batching plant○ Observation of production, quality control, and transportation
--	--

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-IV

COURSE CODE: DCE401

COURSE NAME: STRUCTURAL ANALYSIS

Course Objectives:

- To understand the fundamental principles of structural analysis and behavior of different structural elements.
- To analyze determinate beams, frames, and trusses under various loading conditions.
- To study shear force and bending moment diagrams for statically determinate structures.
- To develop skills in analyzing simple indeterminate structures and understanding influence lines.
- To prepare students for designing structural components and solving practical engineering problems.

Course Outcomes: At the end of the course students shall be able to

CO1	Determine support reactions and internal forces in statically determinate beams and frames.
CO2	Draw shear force and bending moment diagrams for beams under different loads.
C03	Analyze determinate trusses using method of joints and method of sections
C04	Understand basic concepts of indeterminate structures and influence lines.

Unit	Content	Credit	Weightage
I	Introduction and Analysis of Determinate Beams <ul style="list-style-type: none">• Introduction to Structural Analysis:<ul style="list-style-type: none">○ Types of structures: beams, frames, trusses, arches, cables○ Types of supports: fixed, hinged, roller, guided○ Types of loads: concentrated, distributed, moments○ Equilibrium conditions: $\sum F_x = 0$, $\sum F_y = 0$, $\sum M = 0$• Analysis of Determinate Beams:<ul style="list-style-type: none">○ Static determinacy and indeterminacy○ Calculation of support reactions○ Shear force and bending moment concepts○ Relationship between load, shear force and bending moment• Shear Force and Bending Moment Diagrams:<ul style="list-style-type: none">○ Cantilever beams with point loads and UDL○ Simply supported beams with point loads, UDL, and couple○ Overhanging beams <p>Applications: Design of beams in buildings, bridges, and industrial structures.</p>	1	25%
II	Analysis of Determinate Frames and Trusses	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">• Analysis of Plane Frames:<ul style="list-style-type: none">◦ Types of frames: portal frames, gable frames◦ Calculation of support reactions for frames◦ Axial force, shear force and bending moment in frame members• Analysis of Trusses:<ul style="list-style-type: none">◦ Types of trusses: roof trusses, bridge trusses◦ Assumptions in truss analysis◦ Methods of analysis:<ul style="list-style-type: none">▪ Method of joints▪ Method of sections• Determinacy and Stability of Trusses:<ul style="list-style-type: none">◦ Conditions for determinacy: $m = 2j - 3$◦ Stability criteria <p>Applications: Roof truss design, bridge truss analysis, industrial shed frames.</p>		
III	<p>Deflection of Beams and Energy Methods</p> <ul style="list-style-type: none">• Deflection of Beams:<ul style="list-style-type: none">◦ Importance of deflection in design◦ Double integration method◦ Macaulay's method for beams with multiple loads◦ Moment area method (Mohr's theorems)◦ Conjugate beam method• Energy Methods:<ul style="list-style-type: none">◦ Strain energy in axial loading, bending and shear◦ Castigliano's theorems (first theorem only)◦ Principle of virtual work◦ Unit load method for deflection calculation• Deflection Calculations for:<ul style="list-style-type: none">◦ Simply supported beams with central point load◦ Cantilever beams with end load◦ Beams with UDL <p>Applications: Serviceability check, vibration analysis, design for stiffness.</p>	1	25%
IV	<p>Introduction to Indeterminate Structures and Influence Lines</p> <ul style="list-style-type: none">• Indeterminate Structures:<ul style="list-style-type: none">◦ Degree of static indeterminacy for beams, frames and trusses◦ Introduction to force method and displacement method◦ Analysis of propped cantilever beams	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Analysis of fixed beams (with concentrated load at center only)● Influence Lines:<ul style="list-style-type: none">○ Concept of influence lines○ Influence lines for simply supported beams:<ul style="list-style-type: none">■ Reaction at support■ Shear force at a section● Moving Loads:<ul style="list-style-type: none">○ Single concentrated load○ Uniformly distributed load longer than span○ Two concentrated loads● Introduction to Matrix Methods:<ul style="list-style-type: none">○ Flexibility and stiffness matrix concepts (qualitative only) <p>Applications: Bridge design, moving load analysis, preliminary design of continuous beams.</p>		
--	---	--	--

Textbooks:

- Primary: *Basic Structural Analysis* — C.S. Reddy
- Primary: *Structural Analysis* — R.C. Hibbeler

Reference books:

- *Theory of Structures* — S. Ramamrutham
- *Structural Analysis* — Aslam Kassimali
- *Structural Analysis* — S.S. Bhavikatti
- *Strength of Materials and Theory of Structures* — B.C. Punmia

Online Platforms:

- NPTEL/SWAYAM: *Structural Analysis* by IIT Madras/Kharagpur
- Coursera: *Mechanics of Materials* by Georgia Tech
- edX: *Structural Analysis and Design* by MIT

PRACTICAL LIST:

Beam Analysis Experiments <ol style="list-style-type: none">1. Support Reactions Verification:<ul style="list-style-type: none">○ Simply supported beam with point loads○ Measurement of reactions using load cells○ Comparison with theoretical calculations2. Shear Force Distribution:<ul style="list-style-type: none">○ Experimental determination of shear force at sections○ Using shear force apparatus○ Plotting experimental vs theoretical SF diagrams3. Bending Moment Distribution:<ul style="list-style-type: none">○ Experimental determination of bending moment	Section C: Truss Analysis <ol style="list-style-type: none">7. Truss Analysis Apparatus:<ul style="list-style-type: none">○ Determination of forces in truss members○ Using model truss with load cells○ Comparison with method of joints calculations8. Zero Force Member Verification:<ul style="list-style-type: none">○ Experimental identification of zero force members○ Under different loading conditions9. Bridge Model Testing:<ul style="list-style-type: none">○ Simple bridge truss model○ Load testing and member force measurement
--	---

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

<ul style="list-style-type: none"> Using bending moment apparatus <p>Deflection Studies</p> <p>4. Deflection of Beams:</p> <ul style="list-style-type: none"> Deflection measurement of simply supported beam under central load Using dial gauges or LVDT Comparison with theoretical deflection using double integration method <p>5. Cantilever Beam Deflection:</p> <ul style="list-style-type: none"> Measurement of end deflection under point load Effect of load position on deflection <p>6. Modulus of Elasticity Determination:</p> <ul style="list-style-type: none"> Using beam deflection formula Calculation of E from deflection data 	<p>Section D: Computer Applications and Modeling</p> <p>10. Software Analysis:</p> <ul style="list-style-type: none"> Introduction to structural analysis software basics) Simple beam analysis using software Comparison with manual calculations <p>11. Influence Line Demonstration:</p> <ul style="list-style-type: none"> Experimental determination of influence lines for reactions Using moving load on beam model <p>12. Model Making and Testing:</p> <ul style="list-style-type: none"> Construction of simple frame model Load testing and failure pattern observation <p>13. Photoelasticity Demonstration (Optional):</p> <ul style="list-style-type: none"> Stress distribution in beams under load <p>Using photoelastic models</p>
---	--

COURSE CODE: DCE402

COURSE NAME: GEOTECHNICAL ENGINEERING

Course Objectives:

- To introduce basic principles of soil mechanics and foundation engineering.
- To classify soils and evaluate their engineering properties.
- To analyze soil compaction, permeability, shear strength, and consolidation.
- To design simple shallow foundations and slopes.
- To perform standard geotechnical laboratory tests.

Course Outcomes: At the end of the course students shall be able to

CO1	Classify soils using index properties and IS classification system.
CO2	Determine engineering properties like permeability, compaction, and shear strength.
C03	Analyze stress distribution, consolidation, and settlement of soils.
C04	Design shallow foundations and evaluate slope stability.

Unit	Content	Credit	Weightage
------	---------	--------	-----------

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

I	Introduction to Soil Mechanics & Soil Classification <ul style="list-style-type: none">Topics:<ul style="list-style-type: none">Formation and types of soilsThree-phase system, basic definitions, relationshipsIndex properties: Specific gravity, water content, void ratio, porosity, densityParticle size distribution (sieve analysis, hydrometer analysis)Consistency limits (Atterberg limits)IS soil classification system (IS 1498)	1	25%
II	Soil Permeability, Compaction & Stress Distribution <ul style="list-style-type: none">Topics:<ul style="list-style-type: none">Darcy's law, permeability measurement (constant & variable head tests)Factors affecting permeabilityCompaction: OMC, MDD, Proctor test, field compaction methodsEffective stress principleBoussinesq's and Westergaard's theories for vertical stress distribution	1	25%
III	Shear Strength & Consolidation <ul style="list-style-type: none">Topics:<ul style="list-style-type: none">Concept of shear strength, Mohr-Coulomb failure theoryTypes of shear tests: Direct shear, Triaxial, UCC testConsolidation: Terzaghi's theory, consolidation test, settlement calculationPre-consolidation pressure, coefficient of consolidation	1	25%
IV	Foundation Engineering & Slope Stability <ul style="list-style-type: none">Topics:<ul style="list-style-type: none">Types of foundations (shallow & deep)Bearing capacity: Terzaghi's equation, IS code methodSettlement of foundationsSlope stability: Types of failures, infinite slope analysis, method of slicesIntroduction to retaining walls and sheet piles	1	25%

Textbooks:

- Soil Mechanics & Foundation Engineering – V.N.S. Murthy
- Geotechnical Engineering – B.M. Das
- Soil Mechanics & Foundation Engineering – Dr. K.R. Arora
- Basic & Applied Soil Mechanics – Gopal Ranjan & A.S.R. Rao

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

Reference books:

- Soil Mechanics & Foundation Engineering – P. Purushothama Raj
- Geotechnical Engineering – S.K. Gulhati & M. Datta
- IS Codes: IS 2720 (Various parts for lab tests), IS 1498, IS 6403, IS 1888

Online Platforms:

- NPTEL: Geotechnical Engineering courses by Prof. N. Sivakugan, Prof. K. R. Saxena
- Coursera: “Soil Mechanics” by Georgia Tech

PRACTICAL LIST:

- Determination of water content (oven drying method).
- Determination of specific gravity of soil solids (pycnometer method).
- Grain size analysis (sieve analysis).
- Determination of Atterberg limits (liquid limit, plastic limit).
- Field density test (sand replacement method).
- Standard Proctor compaction test.
- Permeability test (constant head & falling head).
- Direct shear test on cohesionless soil.
- Unconfined compression test on cohesive soil.
- One-dimensional consolidation test (demonstration).

COURSE CODE: DCE403

COURSE NAME: COMPUTER FUNDAMENTALS AND PROGRAMMING

Course Objectives:

- To understand computer fundamentals and architecture
- To learn programming concepts and problem-solving techniques
- To develop basic programming skills using Python language
- To apply programming to solve engineering problems
- To prepare students for CAD/CAM and automation technologies

Course Outcomes: At the end of the course students shall be able to

CO1	Explain computer architecture and components
CO2	Apply algorithmic thinking to solve problems
C03	Write Python programs for engineering applications
C04	Use data structures and functions in programming

Unit	Content	Credit	Weightage
I	<p>Computer Fundamentals & Problem Solving Topics:</p> <ul style="list-style-type: none">• Computer generations and classifications• Computer architecture: CPU, memory, I/O devices• Number systems: binary, octal, hexadecimal• Algorithms and flowcharts• Problem-solving approaches• Introduction to operating systems• Applications: Understanding computer systems in manufacturing	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

II	Python Programming Basics Topics: <ul style="list-style-type: none">Introduction to Python: features, installationPython IDE and interactive modeBasic syntax, variables, data typesInput/output operationsOperators: arithmetic, relational, logicalConditional statements: if, if-else, nested ifApplications: Simple calculations, decision making	1	25%
III	Control Structures & Functions Topics: <ul style="list-style-type: none">Looping statements: while, for loopsLoop control statements: break, continue, passFunctions: definition, parameters, return valuesBuilt-in functions and modulesRecursion basicsScope of variablesApplications: Iterative calculations, modular programming	1	25%
IV	Data Structures & Engineering Applications Topics: <ul style="list-style-type: none">Lists, tuples, dictionariesStrings and string operationsFile handling: reading, writing, appendingIntroduction to databases and SQL basicsSimple engineering applications:<ul style="list-style-type: none">Stress calculationsTemperature conversionsStatistical analysisApplications: Data processing, engineering calculations	1	25%

Textbooks:

- Primary: *Computer Fundamentals and Programming in C* — Reema Thareja
- Primary: *Python Programming: A Modern Approach* — Vamsi Kurama

Reference books:

- Let Us Python* — Yashavant Kanetkar
- Computer Fundamentals* — P. K. Sinha
- Python for Engineers* — Dr. R. R. Patil
- Introduction to Computers* — Peter Norton

Online Platforms:

- SWAYAM/NPTEL: "Programming in Python" courses by IITs
- Coursera: "Python for Everybody" by University of Michigan
- edX: "Introduction to Computer Science" by Harvard

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

COURSE CODE: DCE404

COURSE NAME: ENVIRONMENTAL ENGINEERING

Course Objectives:

- To understand the importance of environmental sanitation and public health.
- To learn the principles of water supply, treatment, and distribution systems.
- To study wastewater characteristics, collection, treatment, and disposal.
- To introduce solid waste management and air pollution control methods.
- To acquaint students with relevant environmental standards and regulations.

Course Outcomes: At the end of the course students shall be able to

CO1	Estimate water demand and design simple water supply systems.
CO2	Explain the principles and processes of water treatment.
C03	Design sewerage systems and explain wastewater treatment processes.
C04	Identify methods for solid waste management and air pollution control.

Unit	Content	Credit	Weightage
I	Water Supply Engineering <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Importance of protected water supply.○ Water demand: Per capita demand, factors affecting demand, variations.○ Sources of water: Surface and groundwater, intake structures.○ Quality of water: Physical, chemical, and bacteriological parameters.○ Water conveyance: Pipes, pumps, and distribution systems (gravity, pumping).	1	25%
II	Water Treatment <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Objectives of water treatment.○ Unit processes: Screening, plain sedimentation, coagulation-flocculation, sedimentation (clarifier), filtration (slow sand, rapid sand).○ Disinfection: Chlorination, other methods (UV, Ozonation).○ Water softening: Lime-soda process, ion exchange.○ Introduction to advanced treatments (RO, activated carbon).	1	25%
III	Wastewater Engineering <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Wastewater characteristics: Physical, chemical, biological (BOD, COD).	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Sewerage systems: Types (separate, combined), sewer appurtenances.○ Wastewater treatment:<ul style="list-style-type: none">▪ Primary: Screening, grit removal, sedimentation.▪ Secondary: Activated sludge process, trickling filters, oxidation ponds.▪ Sludge treatment: Thickening, digestion, disposal.○ Standards for disposal (CPCB norms).		
IV	Solid Waste Management & Environmental Pollution • Topics: <ul style="list-style-type: none">○ Solid waste: Sources, classification, collection, and transportation.○ Processing and disposal: Composting, incineration, sanitary landfilling.○ Air pollution: Sources, effects, control methods (cyclones, scrubbers, ESP).○ Noise pollution: Measurement, effects, control.○ Environmental legislation: Introduction to Water Act, Air Act, EPA.	1	25%

Textbooks:

- Environmental Engineering (Vol I & II) – S.K. Garg (Khanna Publishers)
- Water Supply & Sanitary Engineering – G.S. Birdie & J.S. Birdie
- Environmental Engineering – P.N. Modi
- Water Supply & Wastewater Engineering – B.C. Punmia, A.K. Jain, A.K. Jain

Reference books:

- Wastewater Engineering – Metcalf & Eddy (Standard reference)
- Environmental Engineering – H.S. Peavy, D.R. Rowe, G. Tchobanoglous
- Solid Waste Management – M.N. Rao
- IS Codes: IS 1172, IS 10500 (Drinking Water), IS 1742, IS 2490 (Discharge Standards)
- Manual on Water Supply & Treatment – CPHEEO, Govt. of India

Online Platforms:

1. NPTEL:
 - "Environmental Engineering" by Prof. B. S. Murty, IIT Madras
 - "Water & Wastewater Engineering" by Prof. C. Venkobachar, IIT Bombay
2. SWAYAM: Courses on "Water and Wastewater Treatment"

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-V

COURSE CODE: DCE501

COURSE NAME: DESIGN OF CONCRETE STRUCTURES

Course Objectives:

- To introduce the fundamentals of reinforced concrete design philosophy.
- To understand working stress and limit state design methods as per IS codes.
- To analyze and design basic RCC structural elements: beams, slabs, columns, and footings.
- To develop skills in preparing structural drawings and detailing.
- To apply code provisions (IS 456:2000) for safe and economical design.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain the concepts of working stress and limit state design methods.
CO2	Design singly and doubly reinforced rectangular beams for flexure and shear.
C03	Design one-way and two-way slabs for given loading conditions.
C04	Design axially loaded short columns and isolated footings.

Unit	Content	Credit	Weightage
I	Introduction to RCC and Materials <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">▪ Introduction to Reinforced Cement Concrete (RCC).▪ Properties of concrete and reinforcing steel (Fe 415, Fe 500).▪ Design philosophies: Working Stress Method (WSM) and Limit State Method (LSM).▪ Introduction to IS 456:2000 and other relevant codes.▪ Loads on structures (dead, live, wind, seismic) as per IS 875.○ Concept of stress-strain curves, modular ratio, neutral axis, lever arm.	1	25%
II	Design of Beams <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Limit state of collapse: Flexure (Singly and Doubly reinforced beams).○ Design constants, balanced, under-reinforced, over-reinforced sections.○ Shear reinforcement design: Shear strength of concrete, design of vertical stirrups.○ Bond, anchorage, and development length (IS 456 provisions).	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none"> ○ Serviceability: Limit state of deflection and cracking (brief). ○ Design examples and detailing of beams. 		
III	<p>Design of Slabs and Columns</p> <p>• Topics:</p> <ul style="list-style-type: none"> ○ Types of slabs: One-way and two-way slabs. ○ Design of simply supported one-way slabs. ○ Introduction to two-way slab design (IS code coefficients). ○ Columns: Classification, effective length, load carrying capacity. ○ Design of axially loaded short columns (with lateral ties). ○ Introduction to eccentric loading (concept only). 	1	25%
IV	<p>Design of Foundations and Drawings</p> <p>• Topics:</p> <ul style="list-style-type: none"> ○ Types of foundations: Isolated, combined, raft. ○ Design of isolated square and rectangular footings for axial load. ○ Introduction to staircase design (dog-legged). ○ Reinforcement detailing as per IS 456 and SP 34. ○ Preparation of structural drawings: Plan, elevation, section with bar bending schedule (BBS). ○ Use of standard design aids (SP 16 for beams/columns, SP 34 for detailing). 	1	25%

Textbooks:

- Reinforced Concrete Design – S. Unnikrishna Pillai & Devdas Menon
- Fundamentals of Reinforced Concrete Design – N.C. Sinha & S.K. Roy
- Reinforced Concrete Design – M.L. Gambhir
- Limit State Design of Reinforced Concrete – B.C. Punmia, A.K. Jain, A.K. Jain

Reference books:

- Design of Reinforced Concrete Structures – S. Ramamrutham
- Reinforced Concrete Design – H.J. Shah & V.L. Shah
- IS Codes: IS 456:2000 (Plain and Reinforced Concrete), IS 875 (Loads), SP 16 (Design Aids), SP 34 (Detailing)
- RCC Designs – B.C. Punmia

Online Platforms:

1. NPTEL:
 - "Design of Reinforced Concrete Structures" by Prof. N. Dhang, IIT Kharagpur
 - "Advanced RCC Design" by Prof. D. N. Sinha, IIT Kharagpur
2. SWAYAM: "Design of Concrete Structures" courses

PRACTICAL LIST:

- **Mix Design:** Conduct concrete mix design as per IS 10262 for given grades (M20, M25).

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- **Test on RCC Beam:** Demonstration of flexural test on simply supported RCC beam.
- **Design Exercises:**
 1. Design and detailing of a singly reinforced rectangular beam.
 2. Design and detailing of a one-way slab.
 3. Design of an axially loaded short column with ties.
 4. Design of an isolated square footing.
- **Drawing Practice:**
 1. Preparation of detailed structural drawing of a beam-column junction.
 2. Preparation of bar bending schedule (BBS) for a simple slab.
- **Software Demonstration:**
 1. Introduction to STAAD.Pro for analyzing a simple frame.
 2. Use of AutoCAD for reinforcement detailing.
- **Site Visit Report:** Visit to RCC construction site focusing on formwork, reinforcement placement, and concreting.

COURSE CODE: DCE502

COURSE NAME: DESIGN OF STEEL STRUCTURES

Course Objectives:

- To introduce the properties and behavior of structural steel as a construction material.
- To understand the limit state design philosophy as per Indian standards (IS 800).
- To analyze and design basic steel structural elements: tension members, compression members, beams, and connections.
- To design simple steel structures: roof trusses and industrial buildings.
- To develop skills in preparing structural drawings and detailing for fabrication.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain the advantages, properties, and sections of structural steel as per Indian standards.
CO2	Design tension members and compression members (struts, columns) using limit state method.
C03	Design beams (laterally supported) for flexure, shear, and deflection.
C04	Design bolted and welded connections for various members.

Unit	Content	Credit	Weightage
I	Introduction to Steel Structures <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Advantages and disadvantages of steel structures.○ Types of structural steel, grades, and properties as per IS 2062.○ Types of rolled steel sections (ISA, ISMB, ISMC, ISHB, etc.) and built-up sections.○ Loads on steel structures (as per IS 875).○ Introduction to limit state design as per IS 800:2007.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Concept of yield stress, ultimate stress, partial safety factors.		
II	Design of Tension and Compression Members <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Tension Members: Modes of failure, net area, design strength, lug angles, tension splices.○ Compression Members: Buckling behavior, effective length, slenderness ratio.○ Design of axially loaded compression members (angles, struts, columns).○ Built-up columns: Lacing and battening systems (concepts and design).○ Introduction to column bases (simple slab base only).	1	25%
III	Design of Beams and Connections <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Beams: Classification (laterally supported/unsupported), modes of failure.○ Design of laterally supported beams for flexure, shear, and deflection.○ Connections:<ul style="list-style-type: none">▪ Bolted connections: Types (bearing type, friction grip), failure modes, design.▪ Welded connections: Types (butt, fillet), design of fillet welds.○ Design of beam-to-beam and beam-to-column connections (simple connections).	1	25%
IV	Roof Trusses and Industrial Buildings <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Types of roof trusses (King post, Pratt, Howe).○ Load calculation on trusses (dead, live, wind).○ Design of truss members (tension and compression).○ Design of connections in trusses (gusseted connections).○ Introduction to industrial buildings: Components (columns, roof trusses, bracings).○ Introduction to plastic design (concept only).	1	25%

Textbooks:

- Design of Steel Structures – N. Subramanian (Oxford University Press)
- Limit State Design of Steel Structures – S.K. Duggal (McGraw Hill)
- Design of Steel Structures – S.S. Bhavikatti (I.K. International)
- Design of Steel Structures – M.R. Shiyekar (PHI Learning)

Reference books:

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- Design of Steel Structures – P. Dayaratnam (S. Chand)
- Steel Structures: Design and Practice – N. Subramanian
- IS Codes:
 1. IS 800:2007 – General Construction in Steel – Code of Practice
 2. IS 875 – Code of Practice for Design Loads
 3. IS 808 – Dimensions for Hot Rolled Steel Sections
 4. IS 816 – Code of Practice for Use of Metal Arc Welding
 5. SP 6 (1) – Handbook for Structural Engineers (Steel Sections)
- Structural Steel Design – Jack C. McCormac & Stephen F. Csernak

Online Platforms:

1. NPTEL:
 - o "Design of Steel Structures" by Prof. Damodar Maity, IIT Kharagpur
 - o "Advanced Steel Structures" by Prof. S.R. Satish Kumar, IIT Madras
2. SWAYAM: "Design of Steel Structures" course by IITs

COURSE CODE: DCE503

COURSE NAME: CONSTRUCTION PROJECT MANAGEMENT

Course Objectives:

- To introduce the fundamental principles and phases of construction project management.
- To develop skills in project planning, scheduling, and resource management.
- To understand cost estimation, budgeting, and financial control in construction.
- To study quality, safety, and contract management in construction projects.
- To familiarize students with modern project management tools and software.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain the project life cycle, roles of project stakeholders, and organizational structures.
CO2	Prepare work breakdown structures (WBS), bar charts, and network diagrams (CPM/PERT).
C03	Estimate project costs, prepare budgets, and understand tendering processes.
C04	Implement quality control and safety measures on construction sites.

Unit	Content	Credit	Weightage
I	Introduction to Construction Project Management <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">o Definition, objectives, and importance of project management.o Project life cycle: Initiation, planning, execution, monitoring, closure.o Types of construction projects (residential, commercial, industrial, infrastructure).o Project stakeholders: Owner, contractor, consultant, authorities.o Organizational structures: Functional,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	matrix, projectized. o Roles and responsibilities of project manager.		
II	Project Planning and Scheduling • Topics: <ul style="list-style-type: none">o Work Breakdown Structure (WBS).o Planning techniques: Bar charts (Gantt charts), milestone charts.o Network techniques:<ul style="list-style-type: none">▪ Critical Path Method (CPM) – activity-on-node.▪ Program Evaluation and Review Technique (PERT).o Float calculation: Total float, free float, independent float.o Resource planning: Leveling and smoothing.	1	25%
III	Cost Estimation and Contract Management • Topics: <ul style="list-style-type: none">o Types of estimates: Preliminary, detailed, revised.o Cost estimation methods: Unit rate, lump sum, approximate quantity method.o Budgeting and cost control: Earned Value Management (EVM) basics.o Tendering process: Types of tenders, bid documents, pre-qualification.o Types of contracts: Item rate, lump sum, turnkey, BOT.o Contract documents: Agreement, conditions of contract, specifications, drawings.	1	25%
IV	Quality, Safety & Modern Practices • Topics: <ul style="list-style-type: none">o Quality management: Quality assurance (QA) vs. quality control (QC), IS codes.o Total Quality Management (TQM) in construction.o Safety management: Causes of accidents, safety regulations (OSHA, BOCA), PPE.o Material management: Procurement, storage, inventory control.o Introduction to modern practices:<ul style="list-style-type: none">▪ Lean construction.▪ Building Information Modeling (BIM) in project management.▪ Sustainable construction practices.	1	25%

Textbooks:

- Construction Project Management – K.K. Chitkara (McGraw Hill)
- Project Planning and Control with PERT and CPM – B.C. Purnnia & K.K. Khandelwal

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT,1956

- Construction Project Management: Theory and Practice – Kumar Neeraj Jha (Pearson)
- A Textbook on Construction Project Management – M.D. Patil (Pearson)

Reference books:

- Construction Project Management – S. Sengupta & H. Guha
- Estimating and Costing in Civil Engineering – B.N. Datta (UBS Publishers)
- Project Management for Engineering and Construction – Garold D. Oberlender
- IS Codes: IS 1200 (Method of Measurement), IS 456 (Concrete), CPWD Works Manual
- NICMAR Publications (National Institute of Construction Management)

Online Platforms:

1. NPTEL:
 - "Construction Project Management" by Prof. Debasis Sarkar, IIT Kharagpur
 - "Project and Production Management" by Prof. Arunachalam, IIT Madras
2. SWAYAM: "Construction Management" courses

PRACTICAL LIST:

- Project Charter Development: Prepare a project charter for a small residential building.
- WBS & Bar Chart: Develop WBS and bar chart for a given construction project.
- Network Analysis:
 1. Draw CPM network for a small project (10-15 activities).
 2. Calculate critical path, floats, and project duration.
- Cost Estimation: Prepare a preliminary cost estimate for a G+1 building using CPWD/State schedule of rates.
- Tender Document Study: Analyze a sample tender document (NIT, bid form, conditions).
- Software Practice:
 1. Create a project schedule using Microsoft Project (Gantt chart).
 2. Basic introduction to Primavera P6 interface.
- Quality & Safety Audit: Prepare a checklist for site quality and safety inspection.
- Case Study Report: Study of a local construction project (visit + report on planning, challenges, solutions).
- Material Management Exercise: Prepare material procurement schedule for RCC work.
- BIM Demonstration: Basic Revit session for 3D modeling and clash detection.

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

COURSE CODE: DCE504

COURSE NAME: TRANSPORTATION ENGINEERING

Course Objectives:

- To introduce the importance and modes of transportation systems.
- To understand the planning, design, and construction of highway and railway alignments.
- To study pavement materials, design, and maintenance techniques.
- To learn traffic engineering fundamentals and management systems.
- To familiarize students with relevant IRC codes, MORTH specifications, and modern trends.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain the classification, planning, and surveys for highway projects.
CO2	Design geometric elements of highways (cross-section, sight distances, horizontal & vertical curves).
C03	Identify pavement materials, design flexible pavements (IRC method), and plan maintenance.
C04	Analyze basic traffic parameters and design simple traffic control devices.

Unit	Content	Credit	Weightage
I	Introduction to Transportation & Highway Planning <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Importance and modes of transportation (road, rail, air, water).○ Highway development in India: Historical perspective, current road networks (NH, SH, MDR, ODR, VR).○ Highway planning: Master plans, road development plans in India.○ Highway surveys: Reconnaissance, preliminary, and detailed surveys.○ Classification of roads as per IRC and MORTH.○ Introduction to Intelligent Transportation Systems (ITS).	1	25%
II	Highway Geometric Design <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Factors controlling geometric design.○ Cross-sectional elements: Carriageway, shoulder, camber, kerb, footpath.○ Sight distances: Stopping sight distance (SSD), overtaking sight distance (OSD), intermediate sight distance.○ Horizontal alignment: Design of horizontal curves, superelevation, extra widening.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none"> ○ Vertical alignment: Gradients (ruling, limiting, exceptional), vertical curves (summit, valley). ○ Design speed and standards as per IRC 73, IRC 86. 		
III	<p>Pavement Materials & Design</p> <ul style="list-style-type: none"> • Topics: <ul style="list-style-type: none"> ○ Types of pavements: Flexible and rigid pavements (components and differences). ○ Pavement materials: Subgrade soil, aggregates, bitumen, tests on materials. ○ Design of flexible pavements: CBR method (IRC 37 guidelines), group index method. ○ Introduction to rigid pavement design (IRC 58). ○ Highway drainage: Surface and subsurface drainage. ○ Pavement failures and maintenance: Types, causes, and remedial measures. 	1	25%
IV	<p>Traffic Engineering & Railways</p> <ul style="list-style-type: none"> • Topics: <ul style="list-style-type: none"> ○ Traffic Engineering: <ul style="list-style-type: none"> ▪ Traffic characteristics: Volume, speed, density, PCU. ▪ Traffic studies: Volume, speed, origin-destination, parking, accident studies. ▪ Traffic control devices: Signs, signals, road markings (IRC 67, IRC 93). ▪ Intersections: Types, design principles of at-grade intersections. ○ Railway Engineering: <ul style="list-style-type: none"> ▪ Permanent way: Components, gauges, coning of wheels. ▪ Track geometry: Gradients, curves, superelevation. 	1	25%

Textbooks:

- Highway Engineering – S.K. Khanna & C.E.G. Justo (Nem Chand & Bros)
- Transportation Engineering (Vol. I & II) – Dr. L.R. Kadiyali (Khanna Publishers)
- Principles of Transportation Engineering – Partha Chakraborty & Animesh Das
- Traffic Engineering and Transport Planning – Dr. L.R. Kadiyali

Reference books:

- Highway Engineering – S.C. Saxena & S.P. Arora
- Railway Engineering – S.C. Saxena & S.P. Arora
- IRC Codes:
 1. IRC 37: Guidelines for Flexible Pavement Design
 2. IRC 73: Geometric Design Standards for Rural (Non-Urban) Highways
 3. IRC 86: Geometric Design Standards for Urban Roads

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- 4. IRC 93: Guidelines for Road Signs
- 5. IRC 67: Code of Practice for Road Signs
- MORTH Specifications (Ministry of Road Transport & Highways)
- Traffic Engineering – Roger P. Roess, Elena S. Prassas, William R. McShane

Online Platforms:

1. NPTEL:
 - "Transportation Engineering I" by Prof. Dr. K. Sudhakar Reddy, IIT Kharagpur
 - "Traffic Engineering and Management" by Prof. Tom V. Mathew, IIT Bombay
 - "Railway Engineering" by Prof. K. N. S. N. Sarma, IIT Kharagpur
2. SWAYAM: Courses on "Highway Engineering" and "Traffic Engineering"

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

SEMESTER-VI

COURSE CODE: DCE601

COURSE NAME: IRRIGATION ENGINEERING

Course Objectives:

- To introduce the importance, methods, and systems of irrigation.
- To understand soil-water-plant relationships and water requirements of crops.
- To study the design of irrigation canals, structures, and diversion works.
- To learn about storage works (dams), water distribution, and irrigation management.
- To familiarize students with modern irrigation techniques and water management practices.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain the necessity, types, and methods of irrigation systems.
CO2	Calculate crop water requirements and irrigation scheduling.
C03	Design irrigation canals (lined and unlined) using Kennedy's and Lacey's theories.
C04	Analyze diversion headworks, dams, and canal regulation structures.

Unit	Content	Credit	Weightage
I	Introduction to Irrigation <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Definition, necessity, and benefits of irrigation.○ History of irrigation in India.○ Types of irrigation: Surface, subsurface, lift irrigation.○ Soil-water-plant relationship: Soil moisture constants, infiltration, permeability.○ Crop water requirement: Duty, delta, base period, relationship between duty and delta.○ Irrigation efficiencies: Water conveyance, application, storage, and use efficiency.	1	25%
II	Canal Irrigation <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Types of canals: Permanent, inundation, lined, unlined.○ Alignment of canals: Watershed, contour, side slope canals.○ Design of irrigation canals:<ul style="list-style-type: none">▪ Kennedy's theory (critical velocity, silt grade).▪ Lacey's theory (regime conditions, silt factor).○ Canal lining: Necessity, types (concrete, PVC, boulder), advantages.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Canal losses: Seepage, evaporation, control measures.○ Canal regulation structures: Falls, cross-drainage works (aqueduct, siphon).		
III	Diversion Headworks & Dams •Topics: <ul style="list-style-type: none">○ Diversion headworks: Types (weir, barrage), components, design principles.○ Weirs: Types (vertical drop, rock fill), design of weir crest, seepage prevention.○ Dams:<ul style="list-style-type: none">▪ Types: Gravity, earth, rockfill, arch dams.▪ Gravity dam: Forces acting, elementary profile, stability analysis (basic).▪ Earth dam: Components, types, seepage control (phreatic line).○ Spillways: Types (ogee, chute, siphon), energy dissipaters.○ Reservoir planning: Storage zones, capacity, sedimentation.	1	25%
IV	Modern Irrigation & Drainage •Topics: <ul style="list-style-type: none">○ Waterlogging and drainage: Causes, effects, prevention, drainage systems.○ Modern irrigation methods:<ul style="list-style-type: none">▪ Sprinkler irrigation: Components, layout, advantages.▪ Drip irrigation: Components, emitters, design considerations.○ Irrigation management: Participatory irrigation management, warabandi.○ Water conservation: Rainwater harvesting, watershed management.○ Environmental impact of irrigation projects.○ Introduction to CAD in irrigation design (basic).	1	25%

Textbooks:

- Irrigation Engineering and Hydraulic Structures – S.K. Garg (Khanna Publishers)
- Irrigation Engineering – Dr. R.K. Sharma & Dr. S.K. Sharma (Kataria & Sons)
- Irrigation and Water Power Engineering – B.C. Punmia & B.B. Pande (Laxmi Publications)
- Irrigation: Theory and Practice – A.M. Michael (Vikas Publishing)

Reference books:

- Water Resources Engineering – R.K. Sharma & T.K. Sharma
- Irrigation Engineering – G.L. Asawa (Wiley Eastern)
- IS Codes:
 1. IS 6966: Criteria for Design of Cross-Drainage Works
 2. IS 12182: Guidelines for Design of Canal Linings

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

3. IS 8413: Criteria for Design of Diversion Weirs
- Manual on Irrigation and Drainage – Central Water Commission (CWC)
- Water Resources Engineering – P. Novak, A.I.B. Moffat, C. Nalluri, R. Narayanan

Online Platforms:

1. NPTEL:
 - "Irrigation Engineering" by Prof. R. Singh, IIT Roorkee
 - "Water Resources Engineering" by Prof. R. Nagarajan, IIT Bombay
2. SWAYAM: "Irrigation and Drainage Engineering" courses

PRACTICAL LIST:

- Soil Moisture Determination: Gravimetric method using oven drying.
- Infiltration Test: Double-ring infiltrometer method.
- Canal Design Exercise:
 1. Design of unlined canal using Kennedy's theory.
 2. Design of lined canal using Lacey's theory.
- Weir Design: Design of a vertical drop weir for given discharge.
- Drip Irrigation Layout: Preparation of layout and bill of materials for a small farm.
- Sprinkler Irrigation Design: Calculation of sprinkler spacing, pressure, and discharge.
- Field Visit Report: Visit to an irrigation project (dam/canal system).
- CAD Exercise: Drawing of canal cross-section and irrigation structure using AutoCAD.
- Crop Water Requirement: Calculation using Penman-Monteith method (simplified).
- Sediment Analysis: Determination of silt concentration in canal water.

COURSE CODE: DCE602

COURSE NAME: TOWN PLANNING AND SMART CITIES

Course Objectives:

- To introduce the principles, objectives, and evolution of town planning.
- To understand urban planning standards, land use patterns, and zoning regulations.
- To study urban infrastructure planning (transport, water, waste, housing).
- To explore the concept, components, and technologies of smart cities.
- To familiarize students with Indian planning acts, schemes, and sustainable urban development.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain the principles, history, and necessity of town planning.
CO2	Prepare and interpret land use plans, zoning maps, and neighborhood layouts.
C03	Plan urban infrastructure systems (roads, water supply, drainage, housing).
C04	Describe smart city components, technologies, and implementation strategies.

Unit	Content	Credit	Weightage
I	Fundamentals of Town Planning <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Definition, objectives, and principles of town planning.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ History of town planning: Ancient, medieval, and modern (Garden City, Radiant City, Neighborhood Concept).○ Planning process: Surveys (physical, social, economic), data collection, analysis.○ Planning theories: Concentric zone, sector, multiple nuclei models.○ Introduction to urban and regional planning in India.○ Planning legislation overview: TCPO, 74th Constitutional Amendment Act.		
II	Urban Planning Standards & Land Use <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Land use planning: Residential, commercial, industrial, recreational, public/semi-public zones.○ Zoning regulations: FAR, ground coverage, building height, setbacks.○ Development plans and master plans: Preparation and implementation.○ Urban standards:<ul style="list-style-type: none">▪ Roads and transportation (width, hierarchy).▪ Water supply, drainage, solid waste management norms.▪ Parks, open spaces, and amenities per population.○ Housing: Types, density norms, affordable housing schemes (PMAY).	1	25%
III	Urban Infrastructure & Environmental Planning <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Urban transportation: Hierarchy of roads, traffic planning, public transit.○ Water supply and sanitation: Demand estimation, distribution, sewage treatment.○ Solid waste management: Collection, processing, disposal methods.○ Environmental planning: Pollution control, green belts, EIA for urban projects.○ Sustainable urban development: Green buildings, rainwater harvesting, energy efficiency.○ Urban renewal and slum rehabilitation.	1	25%
IV	Smart Cities & Digital Governance <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Smart city concept: Definition, objectives, global examples.○ Smart city components:<ul style="list-style-type: none">▪ Smart governance (e-governance,	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<p>citizen participation).</p> <ul style="list-style-type: none">▪ Smart infrastructure (smart water, waste, energy, mobility).▪ Smart IT & communication (IoT, sensors, data analytics).○ Smart Solutions: Intelligent traffic management, smart grids, Wi-Fi hotspots.○ Indian Smart Cities Mission: Selection criteria, features, case studies.○ Challenges in smart city implementation: Financial, technical, social.		
--	--	--	--

Textbooks:

- Town Planning – S.C. Rangwala (Charotar Publishing)
- Town Planning & Smart Cities – Dr. Rame Gowda & S.C. Sharma
- Fundamentals of Town Planning – G.K. Hiraskar (Dhanpat Rai)
- Introduction to Urban Planning – A.K. Jain (TCPO Publications)

Reference books:

- The Smart City in a Digital World – Anthony M. Townsend
- Urban Planning and Development – S.K. Garg (Khanna Publishers)
- Smart Cities: Foundations, Principles, and Applications – Houbing Song et al.
- Government Publications:
 1. Smart City Guidelines – Ministry of Housing and Urban Affairs (MoHUA)
 2. URDPFI Guidelines 2014 (Urban and Regional Development Plans Formulation and Implementation)
 3. NUTP 2006 (National Urban Transport Policy)
- Urban Development Plans Formulation and Implementation – TCPO

Online Platforms:

1. NPTEL:
 - "Urban Planning" by Prof. K. Ramachandra Rao, IIT Kharagpur
 - "Smart Cities" by Prof. T. V. Prabhakar, IIT Madras
2. SWAYAM: "Urban Planning and Development" courses

PRACTICAL LIST:

- Land Use Mapping: Prepare existing and proposed land use maps for a given area using QGIS.
- Neighborhood Layout: Design a neighborhood unit for 5000 population with all amenities.
- Zoning Exercise: Apply zoning regulations (FAR, setbacks, height) to a residential plot.
- Urban Infrastructure Plan:
 1. Design road network hierarchy for a small town.
 2. Prepare water supply and drainage layout for a residential sector.
- Smart City Component Study:
 1. Case study analysis of one Indian smart city (e.g., Surat, Pune, Ahmedabad).
 2. Prepare a report on smart solutions implemented.
- GIS Practical:
 1. Create thematic maps (population density, land use) using QGIS.
 2. Buffer analysis for locating public amenities.
- Traffic Survey & Analysis: Conduct a manual traffic count and propose improvements.

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

- Site Visit Report: Visit to a local town planning authority or smart city project.
- 3D Modeling: Basic mass modeling of a city block using SketchUp/Revit.
- Development Plan Critique: Review and present key aspects of a city's master plan.

COURSE CODE: DCE603

COURSE NAME: CONSTRUCTION TECHNOLOGY AND EQUIPMENT

Course Objectives:

- To introduce modern construction techniques, materials, and methodologies.
- To understand the selection, operation, and management of construction equipment.
- To study advanced construction methods for substructures, superstructures, and special structures.
- To learn equipment economics, maintenance, and safety practices.
- To familiarize students with sustainable construction practices and automation.

Course Outcomes: At the end of the course students shall be able to

CO1	Explain modern construction techniques and materials for various civil engineering works.
CO2	Select appropriate construction equipment for earthwork, concreting, and material handling.
C03	Plan construction sequences for substructures, superstructures, and finishing works.
C04	Calculate equipment productivity, cost, and efficiency for construction projects.

Unit	Content	Credit	Weightage
I	Modern Construction Techniques & Materials <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Introduction to construction technology: Evolution and trends.○ Modern construction materials:<ul style="list-style-type: none">▪ Advanced concrete (self-compacting, high-performance, fiber-reinforced).▪ Prefabricated and precast components.▪ Composite materials, smart materials (brief).○ Sustainable construction: Green building materials, recycling in construction.○ Modular construction and 3D printing in construction (concepts).○ Construction documents: Drawings, specifications, method statements.	1	25%
II	Construction Equipment - Earthwork & Material Handling <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Equipment selection factors: Project size, soil type, cost, availability.○ Earthmoving equipment:<ul style="list-style-type: none">▪ Excavators (types, attachments), bulldozers, graders, scrapers.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">▪ Trenching machines, compactors (smooth wheel, sheepfoot, pneumatic).○ Drilling and blasting equipment (for rock excavation).○ Material handling equipment:<ul style="list-style-type: none">▪ Cranes (mobile, tower, crawler), hoists, conveyors.▪ Concrete mixers, batching plants, pumps, transit mixers.		
III	<p>Construction Methods for Structures</p> <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Substructure Construction:<ul style="list-style-type: none">▪ Deep excavation: Dewatering methods, sheet piling, diaphragm walls.▪ Foundation techniques: Pile driving (precast, bored), caissons, well foundations.○ Superstructure Construction:<ul style="list-style-type: none">▪ Formwork systems: Traditional, modular, flying formwork.▪ Scaffolding and shoring types.▪ Concrete placement techniques: Pumping, tremie, slipforming.• Finishing Works:<ul style="list-style-type: none">○ Flooring types (terrazzo, epoxy, tile), false ceiling, plastering, painting.• Pre-stressed and post-tensioned construction methods.	1	25%
IV	<p>Equipment Management, Safety & Advanced Topics</p> <ul style="list-style-type: none">• Topics:<ul style="list-style-type: none">○ Equipment management:<ul style="list-style-type: none">▪ Ownership vs. rental decisions.▪ Maintenance schedules (preventive, breakdown).▪ Depreciation methods, operating cost estimation.○ Construction safety:<ul style="list-style-type: none">▪ OSHA standards, PPE, safety in excavation, scaffolding, equipment operation.▪ Hazard identification and risk assessment (HIRA).• Advanced topics:<ul style="list-style-type: none">○ Automation in construction: Robotics, drones, GPS-guided equipment.	1	25%

MK UNIVERSITY

PATAN, GUJARAT

ESTABLISHED BY THE GUJARAT GOVT.

RECOGNIZED BY UGC UNDER SECTION 2(f) OF UGC ACT, 1956

	<ul style="list-style-type: none">○ Building Information Modeling (BIM) in construction planning.○ Lean construction principles.		
--	---	--	--

Textbooks:

- Construction Equipment & Management – S.C. Sharma & B.K. Kaul (Khanna Publishers)
- Construction Planning & Equipment – M.S. Deodhar (Charotar Publishing)
- Construction Planning, Equipment, and Methods – R.L. Peurifoy & R. Schexnayder (McGraw Hill)
- A Textbook of Construction Technology – Vazirani & Chandola (Khanna Publishers)

Reference books:

- Construction Technology – Roy Chudley & Roger Greeno
- Equipment for Construction – Dr. Mahesh Varma (Standard Publishers)
- IS Codes:
 - IS 4130: Safety Code for Scaffolding and Ladders
 - IS 5121: Safety Code for Piling and Foundation Work
 - IS 3764: Safety Code for Excavation Work
- Construction Management & Equipment – Kumar Neeraj Jha
- CPWD Works Manual – Volume I & II (Construction techniques)

Online Platforms:

1. NPTEL:
 - "Construction Equipment and Management" by Prof. S. P. Mukherjee, IIT Kharagpur
 - "Advanced Construction Technology" by Prof. S. K. Bhattacharyya, IIT Kharagpur
2. SWAYAM: "Construction Technology & Equipment Management" courses

PRACTICAL LIST:

- Equipment Identification & Study:
 - Prepare a catalog of construction equipment with specifications and applications.
 - Visit to equipment dealership/rental agency.
- Productivity Calculation:
 - Calculate output and cost for excavator, bulldozer, and concrete mixer.
- Site Layout Planning:
 - Prepare equipment layout for a G+2 building construction site.
- Formwork Design Exercise:
 - Design formwork for a RCC column and slab (manual calculation).
- Safety Audit:
 - Prepare a safety checklist for excavation, scaffolding, and equipment operation.
- Concrete Technology Practical:
 - Demonstration of concrete mixing, pumping, and testing (slump, cube).
- Earthwork Calculation:
 - Calculate cut and fill volumes from given site contours using software/manual methods.
- Equipment Maintenance Schedule:
 - Prepare preventive maintenance schedule for a excavator and concrete mixer.
- Case Study Presentation